ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 4

Examples Class 4: Friday January 17, 1:30-3:30 in MR 9. I will mark problems 1, 4, 8 and 10. Leave work in my box by 5pm on January 15 if you would like it marked.

- 1. (a) Show that there is no orientation reversing homeomorphism $f : \mathbb{CP}^2 \to \mathbb{CP}^2$. (b) If $f : S^2 \times S^2 \to \mathbb{CP}^2$, show that $f_* : H_4(S^2 \times S^2) \to H_4(\mathbb{CP}^2)$ has even degree.
- 2. Suppose M_1 and M_2 are closed connected oriented *n*-manifolds and that $x_i \in M_i$. Choose charts $\phi_i : U_i \to \mathbb{R}^n$, where $x_i \in U_i \subset M_i$ and $\phi_i(x_i) = 0$ with the property that $\phi_{1*}([M_1]|_{x_1}) = -\phi_{2*}([M_2]|_{x_2})$. Let $M'_i = M_i - \phi_i^{-1}(B_1(0))$, where $B_1(0)$ is the open ball of radius 1. We define the *connected sum* $M_1 \# M_2 := M'_1 \amalg M'_2 / \sim$ where $\phi_1^{-1}(x) \sim \phi_2^{-1}(x)$ for $x \in S^{n-1}$.
 - (a) Explain why $M_1 \# M_2$ is a manifold.
 - (b) Show that $H^i(M_1 \# M_2) = H^i(M_1) \oplus H^i(M_2)$ for 0 < i < n.
 - (c) Show that there is an orientation $[M_1 \# M_2]$ on M_1 such that

$$[M_1 \# M_2]|_{M'_i} = [M_i]|_{M'_i}$$

for i = 1, 2.

(d) Show that the cup product pairing on $H_i(M_1 \# M_2)$ is given by

 $((a_1, a_2), (b_1, b_2))_{\#} = (a_1, b_1)_1 + (a_2, b_2)_2,$

for $0 < |a_1| = |a_2| < n$ and $0 < |b_1| = |b_2| < n$, where $(\cdot, \cdot)_i$ is the cup product pairing on $H_*(M_i)$.

- 3. Suppose M is a \mathbb{Z} -orientable 4-manifold. If $H_1(M)$ is free over \mathbb{Z} , show that $H_*(M)$ and $H^*(M)$ are free over \mathbb{Z} . Assume that this is the case, and choose a basis $\langle a_1, \ldots, a_n \rangle$ for $H^2(M)$. Let A be the matrix whose ijth entry is (a_i, a_j) . Show that A is symmetric, and that det $A = \pm 1$.
- 4. Orient \mathbb{CP}^2 (over \mathbb{Z}) so that (a, a) = 1, where $\langle a \rangle = H^2(\mathbb{CP}^2)$, and let $\overline{\mathbb{CP}}^2$ denote the same manifold \mathbb{CP}^2 with the opposite orientation. Define $X_1 = \mathbb{CP}^2 \# \mathbb{CP}^2$, $X_2 = \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$, and $X_3 = S^2 \times S^2$. Show that $H_*(X_1) \simeq H_*(X_2) \simeq H_*(X_3)$, but that no two of the X_i are homotopy equivalent.
- 5. If M is a Z-orientable manifold of dimension 4n + 2, show that the dimension of $H_{2n+1}(M; \mathbb{Q})$ is even.

- 6. (a) Suppose u_i generates $H^{n_i}(\mathbb{R}^{n_i}|0)$ (i = 1, 2). If $p_i : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^{n_i}$ is the projection, show that $p_1^*(u_1) \cup p_2^*(u_2)$ generates $H^{n_1+n_2}(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}|0)$.
 - (b) Now suppose that $\pi: E_i \to B$ (i = 1, 2) are vector bundles over B, and that U_i is a Thom class for E_i . If $p_i: E_1 \oplus E_2 \to E_i$ is the projection, show that $p_1^*(U_1) \cup p_2^*(U_2)$ is a Thom class for $E_1 \oplus E_2$.
 - (c) Deduce that $E_1 \oplus E_2$ can be oriented so that $e(E_1 \oplus E_2) = e(E_1) \cup e(E_2)$.
- 7. If $p \in \mathbb{C}[z_0, z_1, z_2]$ is a homogenous polynomial, we define

$$V_p = \{ [z_0 : z_1 : z_2] \in \mathbb{CP}^2 \mid p(z_0, z_1, z_2) = 0 \}.$$

If p and q are chosen such that V_p and V_q are embedded submanifolds of \mathbb{CP}^2 which intersect transversely, show that V_p and V_q intersect in precisely $(\deg p)(\deg q)$ points.

- 8. Let E be the tangent bundle of \mathbb{CP}^n . Compute $H_*(S(E))$.
- 9. Construct a 3-dimensional real vector bundle over S^4 which has no nonvanishing section.
- 10. If M is a closed odd-dimensional manifold, show that $\chi(M) = 0$. Next, suppose M is a compact odd-dimensional manifold with boundary. Show that $\chi(M) = \frac{1}{2}\chi(\partial M)$. Conclude that \mathbb{RP}^2 does not bound a compact 3-manifold and that \mathbb{CP}^2 does not bound a compact 5-manifold. Does \mathbb{RP}^3 bound a compact 4-manifold? Does \mathbb{CP}^3 bound a compact 7-manifold?
- 11. Suppose \mathbb{F} is a field, and M is a closed \mathbb{F} -oriented manifold. Let $\langle a_i \rangle$ be a basis of $H_i(M; \mathbb{F})$ and let $\langle b_i \rangle$ be the dual basis with respect to the cup product pairing. Given $f: M \to M$, let $\Lambda_f = \{(p, f(p)) \in M \times M\}$ be the graph of f.
 - (a) Express $PD_{M \times M}(\Lambda_f)$ in terms of the a_i and b_j .
 - (b) Define the Lefshetz number of f by $L(f) = \sum_{j=0}^{n} (-1)^{j} \operatorname{Tr} f_{j}^{*}$, where $f_{j}^{*} : H^{j}(M; \mathbb{F}) \to H^{j}(M; \mathbb{F})$. Show that $L(f) = \pm \Lambda_{f} \cdot \Delta$, where $\Delta \subset M \times M$ is the diagonal.
 - (c) Deduce that if $L(f) \neq 0$, f must have a fixed point.
 - (d) Show that any map $f : \mathbb{CP}^2 \to \mathbb{CP}^2$ has a fixed point.

J.Rasmussen@dpmms.cam.ac.uk