## ALGEBRAIC TOPOLOGY (PART III)

## EXAMPLE SHEET 4

Examples Class 4: Friday January 17, 1:30-3:30 in MR 9. I will mark problems 1, 4, 8 and 10. Leave work in my box by 5 pm on January 15 if you would like it marked.

1. (a) Show that there is no orientation reversing homeomorphism $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$.
(b) If $f: S^{2} \times S^{2} \rightarrow \mathbb{C P}^{2}$, show that $f_{*}: H_{4}\left(S^{2} \times S^{2}\right) \rightarrow H_{4}\left(\mathbb{C P}^{2}\right)$ has even degree.
2. Suppose $M_{1}$ and $M_{2}$ are closed connected oriented $n$-manifolds and that $x_{i} \in M_{i}$. Choose charts $\phi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$, where $x_{i} \in U_{i} \subset M_{i}$ and $\phi_{i}\left(x_{i}\right)=0$ with the property that $\phi_{1 *}\left(\left.\left[M_{1}\right]\right|_{x_{1}}\right)=-\phi_{2 *}\left(\left.\left[M_{2}\right]\right|_{x_{2}}\right)$. Let $M_{i}^{\prime}=M_{i}-\phi_{i}^{-1}\left(B_{1}(0)\right)$, where $B_{1}(0)$ is the open ball of radius 1 . We define the connected sum $M_{1} \# M_{2}:=M_{1}^{\prime} \amalg M_{2}^{\prime} / \sim$ where $\phi_{1}^{-1}(x) \sim \phi_{2}^{-1}(x)$ for $x \in S^{n-1}$.
(a) Explain why $M_{1} \# M_{2}$ is a manifold.
(b) Show that $H^{i}\left(M_{1} \# M_{2}\right)=H^{i}\left(M_{1}\right) \oplus H^{i}\left(M_{2}\right)$ for $0<i<n$.
(c) Show that there is an orientation $\left[M_{1} \# M_{2}\right]$ on $M_{1}$ such that

$$
\left.\left[M_{1} \# M_{2}\right]\right|_{M_{i}^{\prime}}=\left.\left[M_{i}\right]\right|_{M_{i}^{\prime}}
$$

for $i=1,2$.
(d) Show that the cup product pairing on $H_{i}\left(M_{1} \# M_{2}\right)$ is given by

$$
\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)_{\#}=\left(a_{1}, b_{1}\right)_{1}+\left(a_{2}, b_{2}\right)_{2},
$$

for $0<\left|a_{1}\right|=\left|a_{2}\right|<n$ and $0<\left|b_{1}\right|=\left|b_{2}\right|<n$, where $(\cdot, \cdot)_{i}$ is the cup product pairing on $H_{*}\left(M_{i}\right)$.
3. Suppose $M$ is a $\mathbb{Z}$-orientable 4 -manifold. If $H_{1}(M)$ is free over $\mathbb{Z}$, show that $H_{*}(M)$ and $H^{*}(M)$ are free over $\mathbb{Z}$. Assume that this is the case, and choose a basis $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for $H^{2}(M)$. Let $A$ be the matrix whose $i j$ th entry is $\left(a_{i}, a_{j}\right)$. Show that $A$ is symmetric, and that $\operatorname{det} A= \pm 1$.
4. Orient $\mathbb{C P}^{2}($ over $\mathbb{Z})$ so that $(a, a)=1$, where $\langle a\rangle=H^{2}\left(\mathbb{C P}^{2}\right)$, and let $\overline{\mathbb{C P}}^{2}$ denote the same manifold $\mathbb{C P}^{2}$ with the opposite orientation. Define $X_{1}=\mathbb{C P}^{2} \# \mathbb{C P}^{2}, X_{2}=$ $\mathbb{C P}^{2} \#{\overline{\mathbb{P P}^{2}}}^{2}$, and $X_{3}=S^{2} \times S^{2}$. Show that $H_{*}\left(X_{1}\right) \simeq H_{*}\left(X_{2}\right) \simeq H_{*}\left(X_{3}\right)$, but that no two of the $X_{i}$ are homotopy equivalent.
5. If $M$ is a $\mathbb{Z}$-orientable manifold of dimension $4 n+2$, show that the dimension of $H_{2 n+1}(M ; \mathbb{Q})$ is even.
6. (a) Suppose $u_{i}$ generates $H^{n_{i}}\left(\mathbb{R}^{n_{i}} \mid 0\right)(i=1,2)$. If $p_{i}: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}^{n_{i}}$ is the projection, show that $p_{1}^{*}\left(u_{1}\right) \cup p_{2}^{*}\left(u_{2}\right)$ generates $H^{n_{1}+n_{2}}\left(\mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \mid 0\right)$.
(b) Now suppose that $\pi: E_{i} \rightarrow B(i=1,2)$ are vector bundles over $B$, and that $U_{i}$ is a Thom class for $E_{i}$. If $p_{i}: E_{1} \oplus E_{2} \rightarrow E_{i}$ is the projection, show that $p_{1}^{*}\left(U_{1}\right) \cup p_{2}^{*}\left(U_{2}\right)$ is a Thom class for $E_{1} \oplus E_{2}$.
(c) Deduce that $E_{1} \oplus E_{2}$ can be oriented so that $e\left(E_{1} \oplus E_{2}\right)=e\left(E_{1}\right) \cup e\left(E_{2}\right)$.
7. If $p \in \mathbb{C}\left[z_{0}, z_{1}, z_{2}\right]$ is a homogenous polynomial, we define

$$
V_{p}=\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C P}^{2} \mid p\left(z_{0}, z_{1}, z_{2}\right)=0\right\} .
$$

If $p$ and $q$ are chosen such that $V_{p}$ and $V_{q}$ are embedded submanifolds of $\mathbb{C P}^{2}$ which intersect transversely, show that $V_{p}$ and $V_{q}$ intersect in precisely $(\operatorname{deg} p)(\operatorname{deg} q)$ points.
8. Let $E$ be the tangent bundle of $\mathbb{C P}^{n}$. Compute $H_{*}(S(E))$.
9. Construct a 3 -dimensional real vector bundle over $S^{4}$ which has no nonvanishing section.
10. If $M$ is a closed odd-dimensional manifold, show that $\chi(M)=0$. Next, suppose $M$ is a compact odd-dimensional manifold with boundary. Show that $\chi(M)=\frac{1}{2} \chi(\partial M)$. Conclude that $\mathbb{R P}^{2}$ does not bound a compact 3 -manifold and that $\mathbb{C P}^{2}$ does not bound a compact 5 -manifold. Does $\mathbb{R}^{3}$ bound a compact 4 -manifold? Does $\mathbb{C P}^{3}$ bound a compact 7-manifold?
11. Suppose $\mathbb{F}$ is a field, and $M$ is a closed $\mathbb{F}$-oriented manifold. Let $\left\langle a_{i}\right\rangle$ be a basis of $H_{i}(M ; \mathbb{F})$ and let $\left\langle b_{i}\right\rangle$ be the dual basis with respect to the cup product pairing. Given $f: M \rightarrow M$, let $\Lambda_{f}=\{(p, f(p)) \in M \times M\}$ be the graph of $f$.
(a) Express $P D_{M \times M}\left(\Lambda_{f}\right)$ in terms of the $a_{i}$ and $b_{j}$.
(b) Define the Lefshetz number of $f$ by $L(f)=\sum_{j=0}^{n}(-1)^{j} \operatorname{Tr} f_{j}^{*}$, where $f_{j}^{*}: H^{j}(M ; \mathbb{F}) \rightarrow$ $H^{j}(M ; \mathbb{F})$. Show that $L(f)= \pm \Lambda_{f} \cdot \Delta$, where $\Delta \subset M \times M$ is the diagonal.
(c) Deduce that if $L(f) \neq 0, f$ must have a fixed point.
(d) Show that any map $f: \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ has a fixed point.
J.Rasmussen@dpmms.cam.ac.uk

