ALGEBRAIC TOPOLOGY (PART III)

MICHAELMAS 2019

EXAMPLE SHEET 3

Examples Class 3: Friday November 29, 1:30-3:30 in MR 9. I will mark problems 1, 4, 6 and 9. Hand work in by 5pm on November 27 if you would like it marked.

- 1. Let $X = L_4^3 \times \mathbb{RP}^3$.
 - (a) Write out $C_*^{cell}(X)$ and use it to compute $H_*(X)$.
 - (b) Compute $H_*(X)$ using the Kunneth formula and verify it agrees with your answer in a).
 - (c) Use the universal coefficient theorem and your answer to part b) to compute $H^*(X)$ and $H_*(X; \mathbb{Z}/2)$.
 - (d) Use the universal coefficient theorem to compute $H_*(L_4^3; \mathbb{Z}/2)$ and $H_*(\mathbb{RP}^2; \mathbb{Z}/2)$. Use your answer to compute $H_*(X; \mathbb{Z}/2)$ and verify that it agrees with your answer in c).
- 2. If X is a finite cell complex, define the Euler characteristic $\chi(X) := \sum_{k} (-1)^{k} n_{k}$, where n_{k} is the number of k-cells in X. Prove the following properties of χ :
 - (a) $\chi(X) = \mathcal{P}_{\mathbb{F}}(X)|_{t=-1}$, where \mathbb{F} is any field.
 - (b) $\chi(X \times Y) = \chi(X)\chi(Y).$
 - (c) If A and B are subcomplexes of X, then $\chi(A \cup B) = \chi(A) + \chi(B) \chi(A \cap B)$.
- 3. Let $\Phi_{(X,A)} : H^*(X,A) \otimes H^*(Y) \to H^*(X \times Y, A \times Y)$ be given by $\Phi_{(X,A)}(a \otimes b) = a \times b$, and define $\Phi_A : H^*(A) \to H^*(A \times Y)$ similarly. Show that $\delta \Phi_{(X,A)} = \Phi_A \delta$, where δ denotes the boundary map in the appropriate LES of a pair.
- 4. If X is a space, let $\Delta_X : X \to X \times X$ be the diagonal map given by $\Delta(x) = (x, x)$. Compute $\Delta_{S^2}^* : H^*(S^2 \times S^2) \to H^*(S^2)$ and $\Delta_{T^2}^* : H^*(T^2 \times T^2) \to H^*(T^2)$.
- 5. Let $U, V \subset X$ be open sets. If $x \in H^*(X, U)$ and $y \in H^*(X, V)$, show that $x \cup y \in H^*(X, U \cup V)$. Using this, show that if X has a covering by n contractible open subsets, then $a_1 \cup a_2 \cup \ldots \cup a_n = 0$ whenever $a_1, \ldots a_n \in H^*(X)$ have grading > 0. Deduce that if T^k can be covered by n contractible open subsets, then n > k. Find a covering of T^2 by three contractible open subsets.
- 6. Let Σ_g be the surface of genus g, and suppose $\varphi : \Sigma_g \to \Sigma_h$, where g < h. Show that the map $\varphi_* : H_2(\Sigma_g) \to H_2(\Sigma_h)$ is the zero map. (Hint: consider $\varphi^* : H^1(\Sigma_h) \to H^1(\Sigma_g)$.)
- 7. Given $\phi: S^{2n-1} \to S^n$, let $X_{\phi} = S^n \cup_{\phi} D^{2n}$. $H^*(X_{\phi}) = \langle 1, x_n, x_{2n} \rangle$, where $x_i \in H^i(X_{\phi})$. Thus $x_n^2 = H(\phi)x_{2n}$ for some $H(\phi) \in \mathbb{Z}$.

- (a) Show that the map $[\phi] \to H(\phi)$ defines a homomorphism $H : \pi_{2n-1}(S^n) \to \mathbb{Z}$. *H* is known as the *Hopf invariant*.
- (b) By considering a cell decomposition of $S^n \times S^n$, show that H is nontrivial for every even n. Deduce that $\pi_{4m-1}(S^{2m})$ is infinite for all m > 0.
- 8. Let M be the Mobius bundle over S^1 . Show that $M \oplus M$ is a trivial bundle. Is $M \times M$ (a bundle over $S^1 \times S^1$) trivial?
- 9. Let $E = TS^2$ be the tangent bundle of S^2 . Show that the unit sphere bundle S(E) is homeomorphic to SO(3), which is also homeomorphic to \mathbb{RP}^3 . Deduce that $e(E) = \pm 2a$, where $H^2(S^2) = \langle a \rangle$.
- 10. Let $E \to B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$.
- 11. Given $\gamma: S^{n-1} \to O(k)$, let $E_{\gamma} = D_N^n \times \mathbb{R}^k \coprod D_S^n \times \mathbb{R}^k / \sim$, where \sim identifies $(x, v) \in S_N^{n-1} \times \mathbb{R}^2$ with $(x, \gamma(x) \cdot v) \in S_S^{n-1} \times \mathbb{R}^k$. Show that E_{γ} is an vector bundle over S^n and that any vector bundle over S^n is isomorphic to some E_{γ} . Show further that $E_{\gamma} \simeq E_{\gamma'}$ if and only if $\gamma \sim \gamma'$.
- 12. Show that up to isomorphism there is a unique nontrivial k-dimensional vector bundle E_k over S^1 . Use ES 1 #11 to compute $H^*(S(E_k))$.

J.Rasmussen@dpmms.cam.ac.uk