ALGEBRAIC TOPOLOGY (PART III)

EXAMPLE SHEET 3

Examples Class 3: Friday November 29, 1:30-3:30 in MR 9. I will mark problems 1, 4, 6 and 9 . Hand work in by 5 pm on November 27 if you would like it marked.

1. Let $X=L_{4}^{3} \times \mathbb{R P}^{3}$.
(a) Write out $C_{*}^{\text {cell }}(X)$ and use it to compute $H_{*}(X)$.
(b) Compute $H_{*}(X)$ using the Kunneth formula and verify it agrees with your answer in a).
(c) Use the universal coefficient theorem and your answer to part b) to compute $H^{*}(X)$ and $H_{*}(X ; \mathbb{Z} / 2)$.
(d) Use the universal coefficient theorem to compute $H_{*}\left(L_{4}^{3} ; \mathbb{Z} / 2\right)$ and $H_{*}\left(\mathbb{R} \mathbb{P}^{2} ; \mathbb{Z} / 2\right)$. Use your answer to compute $H_{*}(X ; \mathbb{Z} / 2)$ and verify that it agrees with your answer in c).
2. If X is a finite cell complex, define the Euler characteristic $\chi(X):=\sum_{k}(-1)^{k} n_{k}$, where n_{k} is the number of k-cells in X. Prove the following properties of χ :
(a) $\chi(X)=\left.\mathcal{P}_{\mathbb{F}}(X)\right|_{t=-1}$, where \mathbb{F} is any field.
(b) $\chi(X \times Y)=\chi(X) \chi(Y)$.
(c) If A and B are subcomplexes of X, then $\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)$.
3. Let $\Phi_{(X, A)}: H^{*}(X, A) \otimes H^{*}(Y) \rightarrow H^{*}(X \times Y, A \times Y)$ be given by $\Phi_{(X, A)}(a \otimes b)=a \times b$, and define $\Phi_{A}: H^{*}(A) \rightarrow H^{*}(A \times Y)$ similarly. Show that $\delta \Phi_{(X, A)}=\Phi_{A} \delta$, where δ denotes the boundary map in the appropriate LES of a pair.
4. If X is a space, let $\Delta_{X}: X \rightarrow X \times X$ be the diagonal map given by $\Delta(x)=(x, x)$. Compute $\Delta_{S^{2}}^{*}: H^{*}\left(S^{2} \times S^{2}\right) \rightarrow H^{*}\left(S^{2}\right)$ and $\Delta_{T^{2}}^{*}: H^{*}\left(T^{2} \times T^{2}\right) \rightarrow H^{*}\left(T^{2}\right)$.
5. Let $U, V \subset X$ be open sets. If $x \in H^{*}(X, U)$ and $y \in H^{*}(X, V)$, show that $x \cup y \in$ $H^{*}(X, U \cup V)$. Using this, show that if X has a covering by n contractible open subsets, then $a_{1} \cup a_{2} \cup \ldots \cup a_{n}=0$ whenever $a_{1}, \ldots a_{n} \in H^{*}(X)$ have grading >0. Deduce that if T^{k} can be covered by n contractible open subsets, then $n>k$. Find a covering of T^{2} by three contractible open subsets.
6. Let Σ_{g} be the surface of genus g, and suppose $\varphi: \Sigma_{g} \rightarrow \Sigma_{h}$, where $g<h$. Show that the $\operatorname{map} \varphi_{*}: H_{2}\left(\Sigma_{g}\right) \rightarrow H_{2}\left(\Sigma_{h}\right)$ is the zero map. (Hint: consider $\varphi^{*}: H^{1}\left(\Sigma_{h}\right) \rightarrow H^{1}\left(\Sigma_{g}\right)$.)
7. Given $\phi: S^{2 n-1} \rightarrow S^{n}$, let $X_{\phi}=S^{n} \cup_{\phi} D^{2 n} . H^{*}\left(X_{\phi}\right)=\left\langle 1, x_{n}, x_{2 n}\right\rangle$, where $x_{i} \in H^{i}\left(X_{\phi}\right)$. Thus $x_{n}^{2}=H(\phi) x_{2 n}$ for some $H(\phi) \in \mathbb{Z}$.
(a) Show that the map $[\phi] \rightarrow H(\phi)$ defines a homomorphism $H: \pi_{2 n-1}\left(S^{n}\right) \rightarrow \mathbb{Z} . H$ is known as the Hopf invariant.
(b) By considering a cell decomposition of $S^{n} \times S^{n}$, show that H is nontrivial for every even n. Deduce that $\pi_{4 m-1}\left(S^{2 m}\right)$ is infinite for all $m>0$.
8. Let M be the Mobius bundle over S^{1}. Show that $M \oplus M$ is a trivial bundle. Is $M \times M$ (a bundle over $S^{1} \times S^{1}$) trivial?
9. Let $E=T S^{2}$ be the tangent bundle of S^{2}. Show that the unit sphere bundle $S(E)$ is homeomorphic to $S O(3)$, which is also homeomorphic to $\mathbb{R P}^{3}$. Deduce that $e(E)= \pm 2 a$, where $H^{2}\left(S^{2}\right)=\langle a\rangle$.
10. Let $E \rightarrow B$ be a real vector bundle equipped with a Riemannian metric, and let $F \subset E$ be a subbundle. Show that F^{\perp} is a vector bundle, and that $F \oplus F^{\perp} \cong E$.
11. Given $\gamma: S^{n-1} \rightarrow O(k)$, let $E_{\gamma}=D_{N}^{n} \times \mathbb{R}^{k} \amalg D_{S}^{n} \times \mathbb{R}^{k} / \sim$, where \sim identifies $(x, v) \in$ $S_{N}^{n-1} \times \mathbb{R}^{2}$ with $(x, \gamma(x) \cdot v) \in S_{S}^{n-1} \times \mathbb{R}^{k}$. Show that E_{γ} is an vector bundle over S^{n} and that any vector bundle over S^{n} is isomorphic to some E_{γ}. Show further that $E_{\gamma} \simeq E_{\gamma^{\prime}}$ if and only if $\gamma \sim \gamma^{\prime}$.
12. Show that up to isomorphism there is a unique nontrivial k-dimensional vector bundle E_{k} over S^{1}. Use ES $1 \# 11$ to compute $H^{*}\left(S\left(E_{k}\right)\right)$.
J.Rasmussen@dpmms.cam.ac.uk
