Algebraic Topology Part III, 2015-16: Sheet 4

1. (a) Which of the following are orientable? (i) $\mathbb{R P}^{3}$ (ii) $\mathbb{R P}^{2} \times \mathbb{C P}^{2}$ (iii) $K \# T^{2}$, where K is the Klein bottle (\# denotes connect sum).
(b) Prove that any manifold has an orientable double cover.
2. If $\left\{C_{*}^{a}, \rho_{a b}\right\}_{a \in A}$ is a direct system of chain complexes $\left(C_{*}^{a}, d^{a}\right)$ indexed by a poset A, show that $H_{k}\left(\xrightarrow{\lim }\left(C_{*}^{a}\right)\right)=\underline{\longrightarrow} H_{k}\left(C_{*}^{a}\right)$. Deduce that the direct limit of exact sequences is exact.
3. (i) Let M be a closed connected oriented n-manifold. Show that there is a degree one map $M \rightarrow S^{n}$.
(ii) If M and N are closed connected oriented manifolds of the same dimension and $f: M \rightarrow N$ has non-zero degree, is $f^{*}: H^{*}(N ; \mathbb{Z}) \rightarrow H^{*}(M ; \mathbb{Z})$ necessarily injective?
(iii) Prove that if a finite group G acts freely on S^{n} then some G-orbit is not contained in any open hemisphere. [Hint: Construct a map $S^{n} / G \rightarrow S^{n}$.]
4. Show that the only non-trivial cup-products in $\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right)$ are those forced by Poincaré duality. Give a space in which that conclusion would not be true.
5. (i) Show there is no map $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2}$ of degree -1 .
(ii) Show there is no map $\mathbb{C P}^{2} \times \mathbb{C P}^{2} \rightarrow \mathbb{C P}^{2} \times \mathbb{C P}^{2}$ of degree -1 .
(iii) Let $f: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ be a map of degree 8. What can you say about n ?
6. (a) Suppose $Y \subset X$ is a smooth closed submanifold of a smooth closed manifold. Using the tubular neighbourhood theorem, prove $H_{c t}^{*}(X \backslash Y) \cong H^{*}(X, Y)$.
(b) Suppose $X \subset S^{n}$ is a closed codimension one smooth submanifold. Show that the complement $S^{n} \backslash X$ has $1+b_{n-1}(X)$ connected components. [You may assume that the complement $S^{n} \backslash X$ has "finite type".]
7. (i) Show by induction on the dimension that a non-degenerate skew-symmetric bilinear form over \mathbb{R} is equivalent to a direct sum of copies of the form $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Hence show that any oriented closed six-manifold has even third Betti number.
(ii) Let V be a vector space carrying a non-degenerate skew form as above. If $W \subset V$ is isotropic, meaning $\left.\langle\cdot, \cdot\rangle\right|_{W \times W} \equiv 0$, show that $\operatorname{dim}(W) \leq \frac{\operatorname{dim}(V)}{2}$. What does this say about the cohomology classes defined by a collection of pairwise disjoint 3-dimensional submanifolds of a closed oriented six-manifold?
8. (a) Describe the long exact sequence associated to the short exact sequence

$$
0 \rightarrow C_{*}(X ; \mathbb{Z}) \xrightarrow{n} C_{*}(X ; \mathbb{Z}) \longrightarrow C_{*}\left(X ; \mathbb{Z}_{n}\right) \rightarrow 0
$$

where the first map is multiplication by $n \in \mathbb{Z}_{>0}$ and $C_{i}(X ; G)$ denotes singular chains $\left\{\sum a_{g} \sigma_{g} \mid a_{g} \in G, \sigma_{g}: \Delta^{i} \rightarrow X\right\}$ with coefficients in the abelian group G. Give the corresponding cohomological sequence.
(b) Suppose $H^{k}(X ; \mathbb{Z})$ is finitely generated and free for every k, and let $\left\{\xi_{j}\right\}$ be a basis for H^{k}. Show that the images $\left\{\tilde{\xi}_{j}\right\}$ of $\left\{\xi_{j}\right\}$ in $H^{k}(X ; \mathbb{Z} / p)$ under the natural map (induced by $\left.\mathbb{Z} \rightarrow \mathbb{Z}_{p}\right)$ also form a basis for $H^{k}(X ; \mathbb{Z} / p)$. Is the freeness assumption on the integral cohomology necessary?
(c) Now suppose X is a closed oriented manifold and set $a_{i j}=\int_{X} \xi_{i} \xi_{j} \in \mathbb{Z}$. Show that the matrix $\left(a_{i j}\right)$ has determinant ± 1, and deduce $H^{k}(X ; \mathbb{Z}) \cong \operatorname{Hom}\left(H^{n-k}(X ; \mathbb{Z}), \mathbb{Z}\right)$.
9. (a) Let M be a smooth oriented closed manifold. Suppose the circle S^{1} acts smoothly on M with discrete (hence isolated) fixed point set. Show that the number of fixed points is the Euler characteristic $\chi(M)$ of M.
(b) Prove that if E and F are oriented vector bundles over a space X, their Euler classes satisfy $e_{E \oplus F}=e_{E} \cdot e_{F}$. Deduce that if n is even, the tangent bundle $T S^{n}$ contains no non-trivial subbundle.
10. Let $n>1$. For a continuous map $\phi: S^{2 n-1} \rightarrow S^{n}$, let Y_{ϕ} be the space obtained by attaching a $2 n$-cell to S^{n} via ϕ. Compute $H^{*}\left(Y_{\phi}\right)$. Fixing $\alpha_{i} \in H^{i}\left(Y_{\phi}\right)$ to be generators for $i \in\{n, 2 n\}$, define $h(\phi)$ by $\alpha_{n}^{2}=h(\phi) \alpha_{2 n}$.
(i) If ϕ is homotopic to a constant, show $h(\phi)=0$.
(ii) Let n be even. Fix a base-point $e \in S^{n}$. By considering the quotient ($S^{n} \times S^{n}$)/ \sim for \sim the equivalence relation $(x, e) \sim(e, x) \forall x$, show that there is a map $\phi: S^{2 n-1} \rightarrow S^{n}$ with $h(\phi)= \pm 2$. Deduce that the homotopy group $\pi_{2 n-1}\left(S^{n}\right)$ is infinite.

