Algebraic Topology Part III, 2018-19: Sheet 3

- 1. Let $E \to X$ be a vector bundle with inner product $\langle \cdot, \cdot \rangle$. Let $F \subset E$ be a vector subbundle. Prove that the orthogonal complement bundle F^{\perp} is locally trivial.
- 2. (i) Let V be a real n-dimensional vector space. Show that an orientation of V, meaning a choice of generator of $H^n(V, V \setminus \{0\}) \cong \mathbb{Z}$, is equivalent to an orientation in the sense of linear algebra, i.e. a choice of ordered basis, where bases differing by a positive determinant matrix are equivalent. Deduce that a complex vector bundle has a canonical orientation.

(ii) If M is an oriented smooth manifold and $Y \subset M$ is a closed smooth submanifold, show an orientation of Y determines a co-orientation of Y (i.e. an orientation of the normal bundle $\nu_{Y/M}$).

(iii) If M is an oriented smooth manifold and $Y, Z \subset M$ are closed oriented smooth submanifolds which meet transversely, show that an ordering of Y and Z defines a co-orientation of $Y \cap Z$.

3. (i) Explain how to view the open Möbius band as a real line bundle (i.e. bundle of real rank one) over the circle, and prove that bundle is non-trivial.

(ii) Prove that a real line bundle over S^n is trivial if n > 1. By considering associated double covers, deduce that isomorphism classes of real line bundles over a finite cell complex X are naturally in 1-1 correspondence with elements of $H^1(X; \mathbb{Z}/2)$.

- 4. Prove the Gysin sequence for a bundle $E \to B$ is an exact sequence of $H^*(B)$ -modules.
- 5. (i) Define what it means for a vector bundle to be *R*-orientable, for a coefficient ring R, in such a way that any vector bundle is orientable with $\mathbb{Z}/2$ -coefficients.

(ii) By considering the Gysin sequence for the tautological real line bundle, prove that as a ring $H^*(\mathbb{RP}^n; \mathbb{Z}/2) \cong \mathbb{Z}/2[w]/(w^{n+1})$ for an element w of degree 1.

(iii) Show that any map $\mathbb{RP}^n \to \mathbb{RP}^m$ acts trivially on reduced cohomology if n > m. What about if n < m?

(iv) Show that \mathbb{RP}^3 is not homotopy equivalent to $\mathbb{RP}^2 \vee S^3$ although they have additively isomorphic (co)homology.

- 6. (i) Let L → CPⁿ be the tautological complex line bundle. By considering the line bundle π₁^{*}L ⊗_C π₂^{*}L → CPⁿ × CPⁿ, with the π_i : Pⁿ × Pⁿ → Pⁿ being projections to the factors, prove that the Euler class of L ⊗_C L is equal to twice the Euler class of L.
 (ii) Prove that the unit circle bundle in L ⊗_C L is homeomorphic to RP²ⁿ⁺¹. Hence, compute the cohomology of RP²ⁿ⁺¹ from knowledge of the cohomology of CPⁿ.
- 7. Let $p: E \to B$ be a fibre bundle over a path-connected space B with fibre $F \cong p^{-1}(b)$. Suppose that $H^*(F)$ is finitely generated and free, and that inclusion $i: F \to E$ induces a surjection on cohomology (since B is path-connected, this holds for the inclusion of

any fibre). Pick a map $\theta : H^*(F) \to H^*(E)$ splitting i^* . Assuming that B admits a finite cover of trivialising open sets for E, prove the Leray-Hirsch theorem: the map

$$H^*(B) \otimes H^*(F) \to H^*(E), \ x \otimes y \mapsto p^*x \cdot \theta(y)$$

is an isomorphism of $H^*(B)$ -modules. [In other words, $H^*(E)$ is a free $H^*(B)$ -module, generated by a collection of classes whose restrictions to the fibre generate $H^*(F)$.]

8. Let X be a compact paracompact space. To a map f from X to the infinite Grassmannian $\operatorname{Gr}_k = \operatorname{Gr}_k(\mathbb{R}^\infty) = \bigcup_n \operatorname{Gr}_k(\mathbb{R}^n)$ we associate the pullback $f^*\mathbb{E}$ of the tautological bundle. We fix an inner product on \mathbb{R}^∞ throughout.

(i) Suppose $f_0, f_1 : X \to \operatorname{Gr}_k$ are maps with image in $\operatorname{Gr}_k(\mathbb{R}^N)$ for some N. Let $U \subset \operatorname{Gr}_k(\mathbb{R}^N) \times \operatorname{Gr}_k(\mathbb{R}^N)$ be the following neighbourhood of the diagonal:

$$U = \{ (v_1, v_2) \mid v_1 \cap v_2^{\perp} = \{0\} \}$$

Show that if $f_0(x)$ and $f_1(x)$ belong to U for every $x \in X$ then $f_0^* \mathbb{E} \cong f_1^* \mathbb{E}$.

(ii) By splitting the homotopy into many small intervals, deduce that if $f_0 \simeq f_1 : X \to$ Gr_k are homotopic then $f_0^* \mathbb{E}$ and $f_1^* \mathbb{E}$ are isomorphic.

(iii) Let $incl_j : v_j \hookrightarrow \mathbb{R}^N$ be the inclusion of k-dimensional subspaces v_j , for j = 0, 1, and let $\alpha : v_0 \to v_1$ be a linear isomorphism. Show that

$$\{\gamma(t) = t \cdot (incl_0) + (1-t) \cdot (incl_1 \circ \alpha)\}$$

is a path of subspaces from $v_0 \oplus \{0\}$ to $\{0\} \oplus v_1$ in $\operatorname{Gr}_k(\mathbb{R}^{2N})$.

(iv) Let $f_0, f_1 : X \to \operatorname{Gr}_k$ have image in $\operatorname{Gr}_k(\mathbb{R}^N)$ and $f_0^*\mathbb{E} \cong f_1^*\mathbb{E}$. Let $T : \mathbb{R}^N \oplus \mathbb{R}^N \to \mathbb{R}^N \oplus \mathbb{R}^N \oplus \mathbb{R}^N$ be the map $(\xi, \eta) \mapsto (-\eta, \xi)$. Show that f_0 and $T \circ f_1$ are homotopic as maps from X to $\operatorname{Gr}_k(\mathbb{R}^{2N})$, and deduce that $f_0 \simeq f_1 : X \to \operatorname{Gr}_k$.

Conclude that the set of isomorphism classes $\operatorname{Vect}_k(X)$ of rank k real vector bundles over X is in bijection with the set of homotopy classes $[X, \operatorname{Gr}_k]$.

- 9. Assume that the map $A \mapsto A^k$ on the unitary group U(n) has degree k^n . Let G be a finitely presented group which has a non-trivial finite-dimensional unitary representation. Add one generator and one relation to G to obtain a new group G'. Show that G' also has a non-trivial finite-dimensional unitary representation. [Hint: view the relation as a function on the unitary group and think about degrees of maps.]
- 10.* (Optional) Show that the map $A \mapsto A^k$ on U(n) has degree k^n . [This is quite hard. One possibility is to first compute the degree on the torus T of diagonal matrices, and then think about a covering map $U(n)/T \times T \to U(n)$. Alternatively, prove that all preimages of a sufficiently generic diagonal matrix are diagonal, and argue from there.]

Ivan Smith is200@cam.ac.uk