Algebraic Topology Part III, 2018-19: Sheet 3

1. Let $E \rightarrow X$ be a vector bundle with inner product $\langle\cdot, \cdot\rangle$. Let $F \subset E$ be a vector subbundle. Prove that the orthogonal complement bundle F^{\perp} is locally trivial.
2. (i) Let V be a real n-dimensional vector space. Show that an orientation of V, meaning a choice of generator of $H^{n}(V, V \backslash\{0\}) \cong \mathbb{Z}$, is equivalent to an orientation in the sense of linear algebra, i.e. a choice of ordered basis, where bases differing by a positive determinant matrix are equivalent. Deduce that a complex vector bundle has a canonical orientation.
(ii) If M is an oriented smooth manifold and $Y \subset M$ is a closed smooth submanifold, show an orientation of Y determines a co-orientation of Y (i.e. an orientation of the normal bundle $\left.\nu_{Y / M}\right)$.
(iii) If M is an oriented smooth manifold and $Y, Z \subset M$ are closed oriented smooth submanifolds which meet transversely, show that an ordering of Y and Z defines a co-orientation of $Y \cap Z$.
3. (i) Explain how to view the open Möbius band as a real line bundle (i.e. bundle of real rank one) over the circle, and prove that bundle is non-trivial.
(ii) Prove that a real line bundle over S^{n} is trivial if $n>1$. By considering associated double covers, deduce that isomorphism classes of real line bundles over a finite cell complex X are naturally in 1-1 correspondence with elements of $H^{1}(X ; \mathbb{Z} / 2)$.
4. Prove the Gysin sequence for a bundle $E \rightarrow B$ is an exact sequence of $H^{*}(B)$-modules.
5. (i) Define what it means for a vector bundle to be R-orientable, for a coefficient ring R, in such a way that any vector bundle is orientable with $\mathbb{Z} / 2$-coefficients.
(ii) By considering the Gysin sequence for the tautological real line bundle, prove that as a ring $H^{*}\left(\mathbb{R} \mathbb{P}^{n} ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2[w] /\left(w^{n+1}\right)$ for an element w of degree 1 .
(iii) Show that any map $\mathbb{R}^{\mathbb{P}^{n}} \rightarrow \mathbb{R} \mathbb{P}^{m}$ acts trivially on reduced cohomology if $n>m$. What about if $n<m$?
(iv) Show that \mathbb{R}^{3} is not homotopy equivalent to $\mathbb{R P}^{2} \vee S^{3}$ although they have additively isomorphic (co)homology.
6. (i) Let $L \rightarrow \mathbb{C P}^{n}$ be the tautological complex line bundle. By considering the line bundle $\pi_{1}^{*} L \otimes_{\mathbb{C}} \pi_{2}^{*} L \rightarrow \mathbb{C P}^{n} \times \mathbb{C P}^{n}$, with the $\pi_{i}: \mathbb{P}^{n} \times \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ being projections to the factors, prove that the Euler class of $L \otimes_{\mathbb{C}} L$ is equal to twice the Euler class of L.
(ii) Prove that the unit circle bundle in $L \otimes_{\mathbb{C}} L$ is homeomorphic to $\mathbb{R}^{2 n+1}$. Hence, compute the cohomology of $\mathbb{R}^{2 n+1}$ from knowledge of the cohomology of $\mathbb{C P}$.
7. Let $p: E \rightarrow B$ be a fibre bundle over a path-connected space B with fibre $F \cong p^{-1}(b)$. Suppose that $H^{*}(F)$ is finitely generated and free, and that inclusion $i: F \rightarrow E$ induces a surjection on cohomology (since B is path-connected, this holds for the inclusion of
any fibre). Pick a map $\theta: H^{*}(F) \rightarrow H^{*}(E)$ splitting i^{*}. Assuming that B admits a finite cover of trivialising open sets for E, prove the Leray-Hirsch theorem: the map

$$
H^{*}(B) \otimes H^{*}(F) \rightarrow H^{*}(E), x \otimes y \mapsto p^{*} x \cdot \theta(y)
$$

is an isomorphism of $H^{*}(B)$-modules. [In other words, $H^{*}(E)$ is a free $H^{*}(B)$-module, generated by a collection of classes whose restrictions to the fibre generate $H^{*}(F)$.]
8. Let X be a compact paracompact space. To a map f from X to the infinite Grassmannian $\mathrm{Gr}_{k}=\operatorname{Gr}_{k}\left(\mathbb{R}^{\infty}\right)=\bigcup_{n} \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ we associate the pullback $f^{*} \mathbb{E}$ of the tautological bundle. We fix an inner product on \mathbb{R}^{∞} throughout.
(i) Suppose $f_{0}, f_{1}: X \rightarrow \operatorname{Gr}_{k}$ are maps with image in $\operatorname{Gr}_{k}\left(\mathbb{R}^{N}\right)$ for some N. Let $U \subset \operatorname{Gr}_{k}\left(\mathbb{R}^{N}\right) \times \operatorname{Gr}_{k}\left(\mathbb{R}^{N}\right)$ be the following neighbourhood of the diagonal:

$$
U=\left\{\left(v_{1}, v_{2}\right) \mid v_{1} \cap v_{2}^{\perp}=\{0\}\right\}
$$

Show that if $f_{0}(x)$ and $f_{1}(x)$ belong to U for every $x \in X$ then $f_{0}^{*} \mathbb{E} \cong f_{1}^{*} \mathbb{E}$.
(ii) By splitting the homotopy into many small intervals, deduce that if $f_{0} \simeq f_{1}: X \rightarrow$ Gr_{k} are homotopic then $f_{0}^{*} \mathbb{E}$ and $f_{1}^{*} \mathbb{E}$ are isomorphic.
(iii) Let $i n c l_{j}: v_{j} \hookrightarrow \mathbb{R}^{N}$ be the inclusion of k-dimensional subspaces v_{j}, for $j=0,1$, and let $\alpha: v_{0} \rightarrow v_{1}$ be a linear isomorphism. Show that

$$
\left\{\gamma(t)=t \cdot\left(\text { incl }_{0}\right)+(1-t) \cdot\left(\text { incl }_{1} \circ \alpha\right)\right\}
$$

is a path of subspaces from $v_{0} \oplus\{0\}$ to $\{0\} \oplus v_{1}$ in $\operatorname{Gr}_{k}\left(\mathbb{R}^{2 N}\right)$.
(iv) Let $f_{0}, f_{1}: X \rightarrow \operatorname{Gr}_{k}$ have image in $\operatorname{Gr}_{k}\left(\mathbb{R}^{N}\right)$ and $f_{0}^{*} \mathbb{E} \cong f_{1}^{*} \mathbb{E}$. Let $T: \mathbb{R}^{N} \oplus \mathbb{R}^{N} \rightarrow$ $\mathbb{R}^{N} \oplus \mathbb{R}^{N}$ be the map $(\xi, \eta) \mapsto(-\eta, \xi)$. Show that f_{0} and $T \circ f_{1}$ are homotopic as maps from X to $\operatorname{Gr}_{k}\left(\mathbb{R}^{2 N}\right)$, and deduce that $f_{0} \simeq f_{1}: X \rightarrow \operatorname{Gr}_{k}$.
Conclude that the set of isomorphism classes $\operatorname{Vect}_{k}(X)$ of rank k real vector bundles over X is in bijection with the set of homotopy classes $\left[X, \mathrm{Gr}_{k}\right]$.
9. Assume that the map $A \mapsto A^{k}$ on the unitary group $U(n)$ has degree k^{n}. Let G be a finitely presented group which has a non-trivial finite-dimensional unitary representation. Add one generator and one relation to G to obtain a new group G^{\prime}. Show that G^{\prime} also has a non-trivial finite-dimensional unitary representation. [Hint: view the relation as a function on the unitary group and think about degrees of maps.]
10.* (Optional) Show that the map $A \mapsto A^{k}$ on $U(n)$ has degree k^{n}. [This is quite hard. One possibility is to first compute the degree on the torus T of diagonal matrices, and then think about a covering map $U(n) / T \times T \rightarrow U(n)$. Alternatively, prove that all preimages of a sufficiently generic diagonal matrix are diagonal, and argue from there.]

Ivan Smith
is200@cam.ac.uk

