Algebraic Topology Part III, 2018-19: Sheet 2

1. Is there a four-dimensional cell complex whose homology groups, written from left to right, so going from degree 0 to degree 4 , are $\mathbb{Z}, 0, \mathbb{Z}, 0, \mathbb{Z} / 2$?
2. (i) Let X be a cell complex and $A \subset X$ a subcomplex. Show (X, A) form a good pair.
(ii) Let X be a cell complex and $K \subset X$ a compact subspace. Prove that K meets only finitely many (open) cells in X. Deduce that any element in the image of $H_{i}(K) \rightarrow$ $H_{i}(X)$ lies in the image of $H_{i}\left(X_{k}\right) \rightarrow H_{i}(X)$ for $k \gg 0$.
3. Let $X=S^{n} \cup_{\phi} D^{n+1}$ be given by gluing an $(n+1)$-cell to an n-sphere by a map of degree $m>1$. Show that the natural map $X \rightarrow X / S^{n} \cong S^{n+1}$ is trivial on homology $H_{*>0}$, but is non-trivial on cohomology $H^{*>0}$. What happens if we instead consider the inclusion map $S^{n} \hookrightarrow X$?
4. A covering space $p: E \rightarrow B$ is a map for which there is an open cover $\left\{V_{a}\right\}$ of B with $p^{-1}\left(V_{a}\right)=\amalg_{b} U_{a, b}$ a disjoint union and each $\left.p\right|_{U_{a, b}}: U_{a, b} \rightarrow V_{a}$ a homeomorphism.
(i) If p has finite fibres of cardinality d, construct a map $p^{!}: H_{*}(B) \rightarrow H_{*}(E)$ with $p_{*} \circ p^{!}$ multiplication by d. [You may wish to look up "lifting properties" for covering maps.]
(ii) Considering Euler characteristics, show there is a covering map $\Sigma_{g} \rightarrow \Sigma_{h}$ if and only if $g=k h-k+1$ for some $k \in \mathbb{N}$.
(iii) If p is a double covering, so $d=2$ in (i), construct a long exact sequence of homology groups with $\mathbb{Z} / 2$-coefficients

$$
\cdots \rightarrow H_{r}(B) \rightarrow H_{r}(E) \xrightarrow{p_{*}} H_{r}(B) \rightarrow H_{r-1}(B) \rightarrow \cdots
$$

(iv) Let $f: S^{n} \rightarrow S^{n}$ be an odd map, i.e. $f(x)=-f(-x)$. By considering an induced map on the exact sequences of (iii) associated to $S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$, show that f has odd degree.
5. (i) Compute the cohomology ring of the surface Σ_{g} for each $g \geq 0$.
(ii) An orientation of Σ_{g} is a choice of isomorphism $H^{2}\left(\Sigma_{g}\right) \cong \mathbb{Z}$. Define the degree of a map of oriented surfaces to be the induced map on H^{2}. For which g is there a map $\Sigma_{g} \rightarrow \Sigma_{1}$ of positive degree? For which g is there a map $\Sigma_{1} \rightarrow \Sigma_{g}$ of positive degree ?
6. If $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has components the elementary symmetric functions

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\sigma_{i}(\underline{z})\right) \quad \sigma_{1}=\sum_{j} z_{j} \quad \sigma_{2}=\sum_{i<j} z_{i} z_{j} \quad \cdots \quad \sigma_{n}=\prod_{j} z_{j}
$$

then prove that f extends to a map $S^{2 n} \rightarrow S^{2 n}$ of degree $n!$ (What happens if we replace \mathbb{C}^{n} by \mathbb{R}^{n} ?)

By considering $\mathbb{C P}^{n}$ as a space of homogeneous polynomials of degree n in two variables, construct a map $\left(\mathbb{C P}^{1}\right)^{n} \rightarrow \mathbb{C P}^{n}$ of degree n ! Deduce that $H^{*}\left(\mathbb{C P}^{n}\right)=\mathbb{Z}[x] /\left(x^{n+1}\right)$, for a generator $x \in H^{2}\left(\mathbb{C P}^{n}\right)$ of degree 2 .
7. By considering a map to the wedge (one-point-union) of two copies of $\mathbb{C P}^{2}$, or otherwise, compute $H^{*}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$ as a ring. Deduce that $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ is not homotopy equivalent to $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, even though they have the same (co)homology groups additively.
8. (a) Prove there is a natural surjection $H^{n}(X ; \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H_{n}(X ; \mathbb{Z}), \mathbb{Z}\right)$, which entwines the boundary maps in the LES of pairs.
(b) Prove this natural surjection is not always an isomorphism.
(c) Prove that $\left.(X, A) \mapsto \operatorname{Hom}\left(H_{n}(X, A), \mathbb{Z}\right)\right)$ does not satisfy the axioms of a generalised cohomology theory.
9. Show that there is a relative cup product

$$
\smile: H^{i}(X, A) \times H^{j}(X, B) \rightarrow H^{i+j}(X, A \cup B)
$$

[Hint: it may be helpful to consider a cochain complex $C_{A+B}^{*}(X)$ of cochains vanishing on simplices lying wholly in A or B, and use the proof of the small simplices theorem.] Using this, show that if X has a cover by n contractible (i.e. homotopy equivalent to a point) open sets, then the cup-length

$$
\max \left\{k \mid \exists a_{1}, \ldots, a_{k} \in H^{>0}(X), a_{1} \smile \ldots \smile a_{k} \neq 0\right\}
$$

is strictly smaller than n. What does this say about the ring $H^{*}(\Sigma X)$, where Σ is the suspension operation?
10. Compute the cup-length of the torus $\left(S^{1}\right)^{n}$.

Show there is a differentiable function on $T^{2}=S^{1} \times S^{1}$ which has fewer critical points than the sum of the Betti numbers, and laugh at Morse theorists. [Hint: define the function by drawing its level sets.] Can the same thing happen on S^{2} ?

Ivan Smith

