1 Clubs

(i) Suppose $\kappa = cf(\kappa) > \aleph_0$. Show $U = \{ \alpha < \kappa : \omega \alpha = \alpha \}$ and $V = \{ \alpha < \kappa : 2^\alpha = \alpha \}$ are club in κ. Give an example of two disjoint clubs in \aleph_ω. Do there exist disjoint stationary subsets of \aleph_1 and of \aleph_2?

(ii) Suppose that A is club in $\kappa = cf(\kappa) > \aleph_0$ and $f : A \subseteq \kappa \to \kappa$ is a function. Prove that $B = \{ \alpha \in A : (\forall \xi < \alpha)(f(\xi) < \alpha) \}$ is club in κ. Deduce that if $\lambda < cf(\kappa)$ and F is a family of λ many functions from A into κ, then the set $C = \{ \alpha \in A : (\forall f \in F)(\forall \xi < \alpha)(f(\xi) < \alpha) \}$ contains a club in κ. In other words, the ordinals which are closed under members of F contain a club.

(iii) Suppose $D \subseteq \kappa = cf(\kappa) > \aleph_0$. Show that D is a club of κ if and only if D is the range of a continuous strictly increasing function $f : \kappa \to \kappa$.

(iv) Prove that if $\delta > cf(\delta) > \aleph_0$, then there is a club E of δ such that no member of E is a regular cardinal. [Hint. Try the range of a continuous function $f : \kappa \to \{ \alpha \in \kappa : \alpha > cf(\kappa) \}$.

(v) Optional. Suppose \mathbb{M} is a τ-structure with domain κ where τ is a vocabulary of cardinality less than $\kappa = cf(\kappa) > \aleph_0$. Show that $\{ \delta \in \kappa : \mathbb{M} \models \delta \}$ is an elementary substructure of \mathbb{M}. [Hint. This assumes some first-order model theory: use Skolem functions and/or the elementary chain theorem.]

2 Non-stationary sets

Suppose $\kappa = cf(\kappa) > \aleph_0$, and X_α is non-stationary in κ for $\alpha < \kappa$.

(i) Show $\bigcup_{\alpha < \kappa}(X_\alpha \setminus (\alpha + 1))$ is non-stationary in κ.

(ii) If $\{ X_\alpha : \alpha < \kappa \}$ is pairwise disjoint, prove $X = \bigcup_{\alpha < \kappa}X_\alpha$ is stationary if and only if $B = \{ \min(X_\alpha) : \alpha < \kappa \}$ is stationary.

(iii) If $\{ X_\alpha : \alpha < \kappa \}$ is pairwise disjoint, then there exists $a \in [\kappa]^\omega$ such that $\bigcup_{\alpha \in a}X_\alpha$ is non-stationary.

3 Applications

(i) Suppose $f : \omega_1 \to \mathbb{R}$ is a continuous function, where ω_1 has the order topology. Prove $(\exists \alpha < \omega_1)(\forall \beta > \alpha)(f(\beta) = f(\alpha))$, i.e. f is eventually constant.

(ii) The ordinal ω_1 with the order topology is not a metrizable topological space.

(iii) Prove the following result of Shelah. Suppose S is a stationary subset of $\kappa = cf(\kappa) > \aleph_0$ and g and h are functions from S into λ such that $(\forall \xi \in S)(g(\xi) \neq h(\xi))$. Then there exists a stationary subset $S' \subseteq S$ such that:

$$\{ g(\xi) : \xi \in S' \} \cap \{ h(\zeta) : \zeta \in S' \} = \emptyset.$$
Non-stationary Ideals

Splitting Stationary Sets and Solovay’s Theorem

Club Filters

(iii) Suppose \(S \subseteq S \) such that \((\forall \zeta, \eta \in D_1)((g(\zeta) < \zeta \Leftrightarrow g(\eta) < \eta) \land (h(\zeta) < \zeta \Leftrightarrow h(\eta) < \eta)) \); apply Fodor’s Lemma to find a stationary subset \(D_2 \subseteq D_1 \) such that if \(g(\zeta) < \zeta \) for all \(\zeta \in D_1 \), then \(g \) is constant on \(D_2 \) and the same for \(h \); now use Question 1 to obtain a club \(C \) closed under the functions \(g \) and \(h \). Let \(S' = D_2 \cap C. \)

4 Club Filters

A filter over a non-empty set \(I \) (or on \(P(I) \), in \(P(I) \), or sometimes on \(I \)) is a family \(F \subseteq P(I) \) such that

(i) \(\emptyset \notin F, I \in F \);
(ii) if \(X, Y \in F \), then \(X \cap Y \in F \);
(iii) if \(X \in F, X \subseteq Y \subseteq I \), then \(Y \in F \).

A filter \(F \) is principal if \(F = \{ X \in P(I) : Y \subseteq X \} \) for some \(Y \in P(I) \); otherwise \(F \) is non-principal. A filter \(F \) over \(I \) is \(\kappa \)-complete if for every \(\lambda < \kappa \) and \(\{ X_\alpha \in F : \alpha < \lambda \} \), \(\bigcap_{\alpha < \lambda} X_\alpha \in F \). A filter \(F \) over \(\kappa \) is normal if for every \(\{ X_\alpha \in F : \alpha < \kappa \} \), the diagonal intersection \(\Delta_{\alpha < \kappa} X_\alpha = \{ \xi < \kappa : (\forall \alpha < \kappa)(\xi \in X_\alpha) \} \in F \).

(i) Suppose \(F \) is a normal filter over a cardinal \(\kappa \), \(S \subseteq \kappa, \kappa \setminus S \notin F \), and \(f \) is a regressive function on \(S \). Show that there exists \(X \subseteq S \) and \(\gamma < \kappa \) such that \(\kappa \setminus X \notin F \) and \((\forall \xi \in X)(f(\xi) = \gamma) \).

(ii) Suppose \(\kappa > cf(\kappa) > \aleph_0 \). The club filter on \(\kappa \) is the family \(C_\kappa = \{ X \in P(I) : X \supseteq C \text{ for some club } C \text{ in } \kappa \} \). Note that \(C_\kappa \) is a filter.

(a) Show that \(C_\kappa \) is \(cf(\kappa) \)-complete.

(b) Prove that if \(\kappa = cf(\kappa) > \aleph_0 \), then \(C_\kappa \) is normal.

5 Splitting Stationary Sets and Solovay’s Theorem

(i) Suppose \(\kappa = cf(\kappa) > \aleph_0 \). Prove that there exists a family \(\{ S_\alpha : \alpha < \kappa \} \) of pairwise disjoint stationary sets such that \(\kappa = \bigcup_{\alpha < \kappa} S_\alpha \). [HINT. Consider cases according as \(\kappa \) is a limit cardinal or a successor cardinal, using some of the elements of an Ulam matrix on \(\kappa \) in the latter case.]

(ii) Optional**: Solovay’s Theorem. Suppose \(S \) is a stationary subset of \(\kappa = cf(\kappa) > \aleph_0 \). Prove that there exists a family \(\{ S_\alpha : \alpha < \kappa \} \) of pairwise disjoint stationary sets such that \(S = \bigcup_{\alpha < \kappa} S_\alpha \).

(iii) Suppose \(S \) is stationary in \(\kappa = cf(\kappa) > \aleph_0 \). Prove that there exists a family \(F \) of \(2^\kappa \) stationary subsets of \(S \) such that if \(A \neq B \in F \), then \(A \setminus B \) and \(B \setminus A \) are stationary in \(\kappa \). [HINT. Part (ii).]

6 Non-stationary Ideals

An ideal over a non-empty set \(I \) is a family \(N \subseteq P(I) \) such that

(i) \(\emptyset \notin N, I \notin N \);
(ii) if \(X, Y \in N \), then \(X \cup Y \in N \);
Stationary Sets and a Variant of Fodor’s Lemma

Clubs and Games

(iii) if \(X \in N, Y \subseteq X \subseteq I \), then \(Y \in F \).

An ideal is an ideal over \(\text{dom}(I) = \bigcup I \). Let \(N^+ = P(I) \setminus N \) be the family of \(N \)-non-negligible sets. The dual filter \(N^* \) of an ideal \(N \) is the filter \(\{X \in P(I) : I \setminus X \in N\} \). An ideal \(N \) is \(\kappa \)-complete and normal if the corresponding dual filter \(N^* \) has these properties. The dual ideal \(F^* \) of a filter \(F \) is defined analogously: \(F^* = \{X \in P(I) : I \setminus X \in F\} \). Clearly, for an ideal \(N \) and a filter \(F \), \(N^{**} = N; F^{**} = F \). For a cardinal \(\kappa \), the non-stationary ideal over \(\kappa \) is the ideal \(NS_\kappa = \{X \in P(I) : X \subseteq Y \) for some non-stationary subset \(Y \subseteq \kappa \}. \) So \(NS_\kappa^+ \) is the collection of stationary sets of \(\kappa \). An ideal \(N \) is \(\lambda \)-saturated if for any \(\{X_\alpha : \alpha < \lambda \} \subseteq N^+ \) there exist \(\beta < \gamma < \lambda \) such that \(X_\beta \cap X_\gamma \in N^+ \). Let \(\text{sat}(N) = \min \{\lambda : N \) is \(\lambda \)-saturated \}.

(i) Show \(C_\kappa^* = NS_\kappa \).

(ii) Prove Ulam’s theorem: there is no \(\kappa^+ \)-saturated \(\kappa^+ \)-complete ideal over \(\kappa^+ \).

(iii) Suppose that for some \(\lambda < \kappa, N \) is a \(\lambda \)-saturated \(\kappa \)-complete ideal over \(\kappa \). Determine whether \(\kappa \) has the tree property, i.e. whether every \(\kappa \)-tree has a cofinal branch. [Hint. WLOG, any candidate \(\kappa \)-tree \(T \) has domain \(T = \kappa \); consider \(D_\xi = \{\zeta \in \kappa : \xi < T \zeta \} \].

7 Stationary Sets and a Variant of Fodor’s Lemma

Let \(A \) be a set of cardinality \(\kappa = \text{cf}(\kappa) > \aleph_0 \). A \(\kappa \)-filtration of \(A \) is an indexed sequence \(\{A_\alpha : \alpha < \kappa \} \) such that for all \(\alpha, \beta < \kappa \)

(a) \(|A_\alpha| < \kappa \);
(b) \(\alpha < \beta \) implies \(A_\alpha \subseteq A_\beta \);
(c) \(\delta \in \text{lim}(\kappa) \) implies \(A_\delta = \cup \{A_\alpha : \alpha < \delta \} \);
(d) \(A = \cup \{A_\alpha : \alpha < \kappa \} \).

(i) Suppose \(\{A_\alpha : \alpha < \kappa \} \) and \(\{B_\alpha : \alpha < \kappa \} \) are \(\kappa \)-filtrations of \(A \). Show the set \(\{\alpha \in \kappa : A_\alpha = B_\alpha \} \) is a club of \(\kappa \).

(ii) Let \(\{A_\alpha : \alpha < \kappa = \text{cf}(\kappa) \} \) be a \(\kappa \)-filtration of \(A \). Prove there exists a club \(C \) of \(\kappa \) such that for all \(\alpha \in C \), \(|A_\alpha \cap A_\alpha^+| = |\alpha^+ \setminus \alpha| \) where \(\alpha^+ \) is the successor of \(\alpha \) in \(C \), i.e. \(\alpha^+ = \inf \{\beta \in C : \beta > \alpha \} \).

(iii) Suppose \(\{A_\alpha : \alpha < \kappa \} \) is a \(\kappa \)-filtration of a set \(A \) of cardinality \(\kappa \). Prove the following variant of Fodor’s Lemma: if \(S \) is a stationary subset of \(\kappa \) and \(f : S \rightarrow A \) is a function such that for all \(\alpha \in S \), \(f(\alpha) \in A_\alpha \), then there exists a stationary \(S' \subseteq S \) such that \(f \upharpoonright S' \) is constant.

8 Clubs and Games

Let \(W \subseteq [\omega_1]^{<\omega_1} \). Let \(G_W \) be the following game of length \(\omega \): players I and II take turns to choose countable ordinals \(\alpha_0, \alpha_1, \ldots \); player I wins \(G_W \) if \(\{\alpha_n : n \in \omega\} \in W \).

Regarding each countable ordinal \(\alpha \) as the set \(\{\beta : \beta < \alpha \} \), show that player I has a winning strategy if and only if \(W \) contains a club of \(\omega_1 \). Show that player II has a winning strategy if and only if the complement of \(W \) contains a club. Deduce that there are games \(G_W \) which are not determined, i.e. neither player has a winning strategy.
9 **Weakly Compact Cardinals**

(i) Let A be a set of cardinals such that for every regular cardinal $\lambda \in A, A \cap \lambda$ is not stationary in λ. Prove there exists an injective function g on A such that $(\forall \alpha \in A)(g(\alpha) < \alpha)$.

(ii) Suppose that κ is a weakly compact cardinal, i.e. κ is (strongly) inaccessible and there are no κ-Aronszajn trees (κ has the tree property). Prove that for every stationary subset S of κ, there is a regular cardinal $\lambda < \kappa$ such that $S \cap \lambda$ is stationary in λ.

10 **Kueker Clubs**

Suppose $\kappa = \text{cf}(\kappa) > \aleph_0$. A club on $[\kappa]^{<\kappa}$ is a family $C \subseteq [\kappa]^{<\kappa}$ such that C is closed under unions of chains of length less than κ and $(\forall X \subseteq [\kappa]^{<\kappa})(\exists Y \in C)(X \subseteq Y)$. A set $S \subseteq [\kappa]^{<\kappa}$ is stationary in $[\kappa]^{<\kappa}$ if $S \cap C \neq \emptyset$ for every club C in $[\kappa]^{<\kappa}$. Formulate and prove analogues of the standard results on clubs, stationary sets and regressive functions for the above definitions.

11 Prove that \lozenge implies that there exists a family $\{Z_\alpha : \alpha < 2^{\aleph_1}\}$ such that:

(i) $(\forall \alpha < 2^{\aleph_1}, Z_\alpha$ is a stationary subset of \aleph_1;

(ii) $(\forall \alpha < \beta < 2^{\aleph_1}, Z_\alpha \cap Z_\beta$ is countable.

12 **Inconsistent Bogus Diamonds**

Let $\lozenge(1)$ be the assertion $(\exists\{A_\alpha \subseteq \alpha : \alpha < \omega_1\})(\forall X \subseteq \omega_1)(\{\alpha < \omega_1 : X \cap \alpha = A_\alpha\}$ contains a club in ω_1). Let $\lozenge(2)$ be the assertion $(\exists\{A_\alpha \subseteq \alpha : \alpha < \omega_1\})(\forall X \subseteq \omega_1)(\{\alpha < \omega_1 : X \cap \alpha = A_\alpha\}$ is stationary in ω_1).

(i) Show $\lozenge(1)$ is false.

(ii) Show $\lozenge(2)$ is false.

13 **Diamonds for Functions**

Suppose that S is a stationary subset of $\lambda = \text{cf}(\lambda) > \aleph_0$. Let $\lozenge_\lambda(S)$ denote the assertion $(\exists\{A_\alpha \subseteq \alpha : \alpha \in S\})(\forall X \subseteq \lambda)(\{\alpha \in S : X \cap \alpha = A_\alpha\}$ is stationary in λ). Let \lozenge_λ mean $\lozenge_\lambda(\lambda)$; so in this notation \lozenge is \lozenge_{ω_1}.

Prove that $\lozenge_\lambda(S)$ is equivalent to the assertion: there exists $\{f_\alpha : \alpha \in S\}$ such that:

(i) $(\forall \alpha \in S, f_\alpha : \alpha \to \alpha$ is a function;

(ii) $(\forall f : \lambda \to \lambda, \{\alpha \in S : f \upharpoonright \alpha = f_\alpha\}$ is stationary in λ.

4
14 DIAMOND EQUIVALENCES

Let \diamondsuit' denote the following assertion: there exists a family \(\{E_\alpha : \alpha \in \omega_1\} \) such that:

(i) \(\forall \alpha \in \omega_1, E_\alpha \) is a countable set of subsets of \(\alpha \);

(ii) \(\forall X \subseteq \omega_1, \{\alpha \in \omega_1 : X \cap \alpha \in E_\alpha\} \) is stationary in \(\omega_1 \).

Prove that \diamondsuit' and \diamondsuit are equivalent in ZFC.

15 DIAMOND AND THE CLUB PREDICTION PRINCIPLE

(i) Show that \diamondsuit implies \clubsuit.

(ii) Prove Devlin’s theorem (1979): $\clubsuit + CH$ implies \diamondsuit. Deduce that \diamondsuit is equivalent to $\clubsuit + CH$.

16 STRONGER DIAMONDS

Let \diamondsuit^+ denote the assertion there exists \(\{S_\alpha \subseteq P(\alpha) : \alpha \in \omega_1\} \) such that \(|S_\alpha| \leq \aleph_0 \) and \((\forall X \subseteq \omega_1)(\exists B \in [\omega_1]^{\omega_1})(\forall \alpha < \omega_1)(\alpha = \sup(B \cap \alpha) \Rightarrow X \cap \alpha \in S_\alpha \land B \cap \alpha \in S_\alpha) \).

(i) Prove that \diamondsuit^+ implies \diamondsuit'.

(ii) Deduce that \diamondsuit^+ implies \diamondsuit.

REMARK: Jensen proved that \diamondsuit^+ implies the Kurepa Hypothesis. This stronger diamond can be defined for the other uncountable cardinals \(\kappa \) and used to settle combinatorial hypotheses about \(\kappa \)-trees.

17 OPTIONAL. INEFFABLE CARDINALS AND THE \(\kappa \)-KUREPA HYPOTHESIS

A cardinal \(\kappa \) is ineffable if \(\kappa = cf(\kappa) > \aleph_0 \) and whenever \(f : [\kappa]^2 \rightarrow 2 \) is a function, then there is a stationary set \(S \subseteq \kappa \) such that \(f \upharpoonright S \) is constant, i.e. \((\exists \gamma)(\forall \xi \in S)(f(\xi) = \gamma) \).

(i) Let \(\kappa = cf(\kappa) > \aleph_0 \). Suppose (*) holds: for every \(\{A_\alpha \subseteq \alpha : \alpha < \kappa\} \), there exists \(A \subseteq \kappa \) such that \(\{\alpha < \kappa : A \cap \alpha = A_\alpha\} \) is stationary in \(\kappa \). Prove that \(\kappa \) is ineffable.

(ii) Prove that if \(\kappa \) is ineffable, then (*) holds.

(iii) Prove the following result of Jensen and Kunen: if \(\kappa \) is ineffable, then the \(\kappa \)-Kurepa Hypothesis is false. [HINT. Do this by refuting the existence of a \(\kappa \)-Kurepa family, i.e. a family \(F \subseteq P(\kappa) \) such that \(|F| = \kappa^+ \) and \((\forall \alpha < \kappa)(\{X \cap \alpha : X \in F\} \) has cardinality at most \(|\alpha| + \aleph_0\); it is a well-known short theorem that the existence of such a family is equivalent to that of a \(\kappa \)-Kurepa tree.]

18 (i) Suppose \(\pi \) is a bijection from \(\lambda^+ \geq \aleph_1 \) onto \(\lambda \times \lambda^+ \). Show there exists a club \(C \) of \(\lambda^+ \) such that for all \(\delta \in C \), the restriction map \(\pi \upharpoonright \delta \) is a bijection from \(\delta \) onto \(\lambda \times \delta \).

(ii) For a cardinal \(\lambda \) and a set \(W \), let \([W]^{\leq \lambda} = \{Y \subseteq W : |Y| \leq \lambda\} \). If \(2^\lambda = \lambda^+ \), let \(\{X_\alpha : \alpha < \lambda^+\} \) be an enumeration of \([\lambda^+]^{\leq \lambda} \) and suppose \(Z \subseteq \lambda^+ \). Show that for some club \(C \) of \(\lambda^+ \), for all \(\delta \in C \) there are arbitrarily large \(\alpha < \delta \) such that for some \(\beta < \delta, Z \cap \alpha = X_\beta \).

(iii) Suppose \(cf(\delta) = \kappa > \aleph_0 \) and \(h \) is a function from \(\text{dom}(h) \supseteq \delta \) into \(\kappa \). Prove that the following are equivalent:
(a) \(h \) is one-to-one on some club \(C \) of \(\delta \);
(b) \(h \) is strictly increasing on some club \(D \) of \(\delta \);
(c) \(\text{range}(h \upharpoonright S) \) is unbounded in \(\kappa \) for every stationary subset \(S \subseteq \delta \).

Remark These propositions are the first steps of a very recent short proof by Peter Komjath of Shelah’s theorem (see the reference below) that \(2^\lambda = \lambda^+ \) implies \(\diamondsuit_\lambda \) for \(\lambda \geq \aleph_1 \); this is not the case for \(\lambda = \aleph_0 \) as \(\text{CH} \) does not imply \(\diamondsuit \).

Open Research Problems.

(i) Assume that \(\lambda = \lambda^{<\lambda} = 2^\mu \) is a regular limit cardinal. Determine whether \(\diamondsuit_\lambda \) is a theorem of \(\text{ZFC} \).