RIEMANN SURFACES EXAMPLES 1

Michaelmas 2017

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at hirriege@dpmms.cam.ac.uk.

1. Let \(U = \mathbb{C} \setminus ([-1,0] \cup [1,\infty]) \) and let \(\gamma \) be a closed curve in \(U \). Using standard properties of winding numbers, show that (i) \(n(\gamma, 1) = 0 \), and (ii) \(n(\gamma, 0) = n(\gamma, -1) \).

2. Let \(P(w_0, w_1, \ldots, w_s; z) \) be a polynomial in the \(s+1 \) complex variables \(w_0, w_1, \ldots, w_s \), where the coefficients of \(P \) are holomorphic on \(\mathbb{C} \). Thus
\[
P(f(z), f^{(1)}(z), \ldots, f^{(s)}(z); z) = 0
\]
is a differential equation, which we abbreviate to \(P(f) = 0 \). If \((f, D) \) is a function element with \(P(f) = 0 \) in \(D \) and if \((g, D') \approx (f, D) \) is an analytic continuation, then show that \(P(g) = 0 \) in \(D' \). Give an example of a differential equation and function elements as above, where \(D' = D \) but \(g \neq f \) on \(D \).

3. Let \(\pi : \hat{X} \to X \) be a covering map of topological spaces (recalling here that the spaces are assumed connected and Hausdorff), and \(f : \hat{X} \to \hat{X} \) a continuous map such that \(\pi f = \pi \). Show that \(f \) has no fixed points unless it is the identity.

4. Show that the power series \(f(z) = \sum_{n>1} \frac{1}{n(n-1)} z^n \) defines an analytic function \((1-z) \log(1-z) + z \) on the unit disc \(D \). Deduce that the function element \((f, D) \) defines a complete analytic function on \(\mathbb{C} \setminus \{1\} \), but does not extend to an analytic function on \(\mathbb{C} \setminus \{1\} \).

5. Show that the power series \(f(z) = \sum z^{2n}/2^n \) has the unit circle as a natural boundary.

6. Show that atlases being equivalent is an equivalence relation on the set of atlases. Show that any conformal structure on a Riemann surface contains a maximal atlas.

7. Let \(T \) be the complex torus \(\mathbb{C}/(1, \tau) \), and let \(Q_1 \subset \mathbb{C} \) be the open parallelogram with vertices \(0, 1, \tau, 1+\tau \), and \(Q_2 \) the translation of \(Q_1 \) by \((1+\tau)/2 \). Let \(U_1, U_2 \) denote the open subsets of \(T \) given by projection of \(Q_1, Q_2 \) respectively, and let \(\phi_1 : U_1 \to Q_1, \phi_2 : U_2 \to Q_2 \) be the charts obtained by taking the inverse maps. Describe explicitly the transition function
\[
\phi_2\phi_1^{-1} : \phi_1(U_1 \cap U_2) \to \phi_2(U_1 \cap U_2).
\]

8. By considering the singularity at \(\infty \) or otherwise, show that any injective analytic map \(f : \mathbb{C} \to \mathbb{C} \) has the form \(f(z) = az + b \), for some \(a \in \mathbb{C}^* \) and \(b \in \mathbb{C} \). Find the injective analytic maps \(\mathbb{C}_\infty \to \mathbb{C}_\infty \).

9. Let \(\Lambda = \langle \tau_1, \tau_2 \rangle \) be a lattice in \(\mathbb{C} \) and let \(T = \mathbb{C}/\Lambda \) be the corresponding complex torus. Let \(\Lambda' \) denote the lattice \((1, \tau_2/\tau_1) \) and \(T' = \mathbb{C}/\Lambda' \). Show that the Riemann surfaces \(T \) and \(T' \) are analytically isomorphic (i.e. conformally equivalent).

10. Define an equivalence relation \(\sim \) on \(\mathbb{C}^* \) by \(z \sim w \) iff \(z = 2^s w \) for some \(s \in \mathbb{Z} \). Show that the quotient space \(R = \mathbb{C}^*/\sim \) has the natural structure of a compact Riemann surface, and that \(R \) is analytically isomorphic to a complex torus.
11. (The identity principle for Riemann surfaces) Let R, S be Riemann surfaces, and $f, g : R \to S$ be analytic maps between them. Set $E = \{ z \in R : f(z) = g(z) \}$; show that either $E = R$ or E contains only isolated points.

12. Let $D \subset \mathbb{C}$ be an open disc and u a harmonic function on D. Define a complex valued function g on D by $g(z) = u_x - iu_y$; show that g is analytic. If z_0 denotes the centre of the disc, define a function f on D by $f(z) = u(0) + \int_{z_0}^z g$, the integral being taken over the straight line segment. Show that f is analytic with $f' = g$, and that $u = \Re f$.

13. Suppose u, v are harmonic functions on a Riemann surface R and $E = \{ z \in R : u(z) = v(z) \}$. Show that either $E = R$, or E has empty interior. Give an example to show that E does not in general consist of isolated points.

14. Let $\{a_1, a_2, a_3, a_4\}$ and $\{b_1, b_2, b_3, b_4\}$ both be sets of four distinct points in \mathbb{C}_∞. Show that any analytic isomorphism $f : \mathbb{C}_\infty \setminus \{a_1, a_2, a_3, a_4\} \to \mathbb{C}_\infty \setminus \{b_1, b_2, b_3, b_4\}$ extends to an analytic isomorphism $\mathbb{C}_\infty \to \mathbb{C}_\infty$. Using your answer to Question 8, find a necessary and sufficient condition for $\mathbb{C} \setminus \{0, 1, a\}$ to be conformally equivalent to $\mathbb{C} \setminus \{0, 1, b\}$, where a, b are complex numbers distinct from 0 and 1.

15. Let $f(z)$ be the complex polynomial $z^3 - z$; consider the subspace R of $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$ given by the equation $w^2 = f(z)$, where (z, w) denote the coordinates on \mathbb{C}^2, and let $\pi : R \to \mathbb{C}$ be the restriction of the projection map onto the first factor. Show that R has the structure of a Riemann surface, on which π is an analytic map. If g denotes the projection onto the second factor, show that g is also an analytic map.

By deleting three appropriate points from R, show that π yields a covering map from the resulting Riemann surface $R_0 \subset R$ to $\mathbb{C} \setminus \{-1, 0, 1\}$, and that R_0 is analytically isomorphic to the Riemann surface (constructed by gluing) associated with the complete analytic function $(z^3 - z)^{1/2}$ over $\mathbb{C} \setminus \{-1, 0, 1\}$.

16. Let $f(z) = \sum a_n z^n$ be a power series of radius of convergence 1, and for w in the open unit disc, set $\rho(w)$ to be the radius of convergence for the power series expansion about w (so that $\rho(0) = 1$). Show that a point $\zeta \in C(0, 1)$ on the unit circle is regular if and only if $\rho(\zeta/2) > 1/2$. Suppose furthermore that all the a_n are non-negative real numbers. If $\zeta \in C(0, 1)$, show that $|f^{(r)}(\zeta/2)| \leq f^{(r)}(1/2)$ for all r, and hence that $\rho(\zeta/2) \geq \rho(1/2)$. Deduce that 1 is a singular point.