RIEMANN SURFACES EXAMPLES 1

H. Krieger Lent 2017

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at hkrieger@dpmms.cam.ac.uk.

1. Let \(U = \mathbb{C} \setminus ([-1, 0] \cup [1, \infty]) \) and let \(\gamma \) be a closed curve in \(U \). Using standard properties of
winding numbers, show that (i) \(n(\gamma, 1) = 0 \), and (ii) \(n(\gamma, 0) = n(\gamma, -1) \).

2. Let \(P(w_0, w_1, \ldots, w_s; z) \) be a polynomial in the \(s+1 \) complex variables \(w_0, w_1, \ldots, w_s \), where the
coefficients of \(P \) are holomorphic on \(\mathbb{C} \). Thus
\[
P(f(z), f^{(1)}(z), \ldots, f^{(s)}(z); z) = 0
\]
is a differential equation, which we abbreviate to \(P(f) = 0 \). If \((f, D) \) is a function element with
\(P(f) = 0 \) in \(D \) and if \((g, D') \approx (f, D) \) is an analytic continuation, then show that \(P(g) = 0 \) in \(D' \).
Give an example of a differential equation and function elements as above, where \(D' = D \) but \(g \neq f \)
on \(D \).

3. Let \(\pi : \tilde{X} \to X \) be a covering map of topological spaces (recalling here that the spaces are
assumed connected and Hausdorff), and \(f : \tilde{X} \to \tilde{X} \) a continuous map such that \(\pi f = \pi \). Show that
\(f \) has no fixed points unless it is the identity.

4. Show that the power series \(f(z) = \sum_{n>1} \frac{1}{n(n-1)} z^n \) defines an analytic function \((1-z) \log(1-z) + z \)
on the unit disc \(D \). Deduce that the function element \((f, D) \) defines a complete analytic function on
\(\mathbb{C} \setminus \{1\} \), but does not extend to an analytic function on \(\mathbb{C} \setminus \{1\} \).

5. Show that the power series \(f(z) = \sum z^{2n}/2^n \) has the unit circle as a natural boundary.

6. Show that atlases being equivalent is an equivalence relation on the set of atlases. Show that any
conformal structure on a Riemann surface contains a maximal atlas.

7. Let \(T \) be the complex torus \(\mathbb{C}/\{1, \tau\} \), and let \(Q_1 \subset \mathbb{C} \) be the open parallelogram with vertices
\(0, 1, \tau, 1+\tau \), and \(Q_2 \) the translation of \(Q_1 \) by \((1+\tau)/2 \). Let \(U_1, U_2 \) denote the open subsets of \(T \) given
by projection of \(Q_1, Q_2 \) respectively, and let \(\phi_1 : U_1 \to Q_1, \phi_2 : U_2 \to Q_2 \) be the charts obtained by
taking the inverse maps. Describe explicitly the transition function
\[
\phi_2\phi_1^{-1} : \phi_1(U_1 \cap U_2) \to \phi_2(U_1 \cap U_2).
\]

8. By considering the singularity at \(\infty \) or otherwise, show that any injective analytic map \(f : \mathbb{C} \to \mathbb{C} \)
has the form \(f(z) = az + b \), for some \(a \in \mathbb{C}^* \) and \(b \in \mathbb{C} \). Find the injective analytic maps \(\mathbb{C}_\infty \to \mathbb{C}_\infty \).

9. Let \(\Lambda = \langle \tau_1, \tau_2 \rangle \) be a lattice in \(\mathbb{C} \) and let \(T = \mathbb{C}/\Lambda \) be the corresponding complex torus. Let
\(\Lambda' \) denote the lattice \(\langle 1, \tau_2/\tau_1 \rangle \) and \(T' = \mathbb{C}/\Lambda' \). Show that the Riemann surfaces \(T \) and \(T' \) are
analytically isomorphic (i.e. conformally equivalent).

10. Define an equivalence relation \(\sim \) on \(\mathbb{C}^* \) by \(z \sim w \) iff \(z = 2^sw \) for some \(s \in \mathbb{Z} \). Show that the
quotient space \(R = \mathbb{C}^*/\sim \) has the natural structure of a compact Riemann surface, and that \(R \) is
analytically isomorphic to a complex torus.

11. (The identity principle for Riemann surfaces) Let \(R, S \) be Riemann surfaces, and \(f, g : R \to S \)
be analytic maps between them. Set \(E = \{z \in R : f(z) = g(z)\} \); show that either \(E = R \) or \(E \)
contains only isolated points.
12. Let \(D \subset \mathbb{C} \) be an open disc and \(u \) a harmonic function on \(D \). Define a complex valued function \(g \) on \(D \) by \(g = u_x - iu_y \); show that \(g \) is analytic. If \(z_0 \) denotes the centre of the disc, define a function \(f \) on \(D \) by
\[
 f(z) = u(z_0) + \int_{z_0}^{z} g,
\]
the integral being taken over the straight line segment. Show that \(f \) is analytic with \(f' = g \), and that \(u = \Re f \).

13. Suppose \(u, v \) are harmonic functions on a Riemann surface \(R \) and \(E = \{ z \in R : u(z) = v(z) \} \).
Show that either \(E = R \), or \(E \) has empty interior. Give an example to show that \(E \) does not in general consist of isolated points.

14. Let \(\{ a_1, a_2, a_3, a_4 \} \) and \(\{ b_1, b_2, b_3, b_4 \} \) both be sets of four distinct points in \(\mathbb{C}_\infty \).
Show that any analytic isomorphism \(f : \mathbb{C}_\infty \setminus \{ a_1, a_2, a_3, a_4 \} \to \mathbb{C}_\infty \setminus \{ b_1, b_2, b_3, b_4 \} \)
extends to an analytic isomorphism \(\mathbb{C}_\infty \to \mathbb{C}_\infty \). Using your answer to Question 8, find a necessary and sufficient condition for \(\mathbb{C} \setminus \{ 0,1,a \} \) to be conformally equivalent to \(\mathbb{C} \setminus \{ 0,1,b \} \), where \(a, b \) are complex numbers distinct from 0 and 1.

15. Let \(f(z) \) be the complex polynomial \(z^3 - z \); consider the subspace \(R \) of \(\mathbb{C}^2 = \mathbb{C} \times \mathbb{C} \) given by the equation \(w^2 = f(z) \), where \((z,w) \) denote the coordinates on \(\mathbb{C}^2 \), and let \(\pi : R \to \mathbb{C} \) be the restriction of the projection map onto the first factor. Show that \(R \) has the structure of a Riemann surface, on which \(\pi \) is an analytic map. If \(g \) denotes the projection onto the second factor, show that \(g \) is also an analytic map.

By deleting three appropriate points from \(R \), show that \(\pi \) yields a covering map from the resulting Riemann surface \(R_0 \subset R \) to \(\mathbb{C} \setminus \{ -1,0,1 \} \), and that \(R_0 \) is analytically isomorphic to the Riemann surface (constructed by gluing) associated with the complete analytic function \((z^3 - z)^{1/2} \) over \(\mathbb{C} \setminus \{ -1,0,1 \} \).

16. Let \(f(z) = \sum a_n z^n \) be a power series of radius of convergence 1, and for \(w \) in the open unit disc, set \(\rho(w) \) to be the radius of convergence for the power series expansion about \(w \) (so that \(\rho(0) = 1 \)). Show that a point \(\zeta \in C(0,1) \) on the unit circle is regular if and only if \(\rho(\zeta/2) > 1/2 \).
Suppose furthermore that all the \(a_n \) are non-negative real numbers. If \(\zeta \in C(0,1) \), show that \(|f^{(r)}(\zeta/2)| \leq f^{(r)}(1/2) \) for all \(r \), and hence that \(\rho(\zeta/2) \geq \rho(1/2) \). Deduce that 1 is a singular point.