1. If f is a meromorphic doubly-periodic (i.e. elliptic) function of degree $k > 0$ show that f' is an elliptic function whose degree ℓ satisfies $k + 1 \leq \ell \leq 2k$. Give examples to show that both bounds are attained.

Recall from example sheet 1: $\psi(z, \tau) = \sum_{n=-\infty}^{\infty} e^{(1/2)(n + 1/2)^2 \tau + (n + 1/2)(z + 1/2)}$ and satisfies $\psi(z + 1) = -\psi(z)$, $\psi(z + \tau) = -e^{(-1/2 - z)}\psi(z)$, where $e(z) = \exp(2\pi iz)$, $\psi(z) = -\psi(-z)$, and has unique zero ‘modulo the lattice $\Lambda = \mathbb{Z} + \tau\mathbb{Z}$'.

2. (i) Prove that if $z, w \in \mathbb{C}$, then
\[
\varphi(z) - \varphi(w) = -\psi'(0)2\psi(z - w)\psi(z + w)/\psi(z)^2\psi(w)^2.
\]

[Hint: Regarding one of w, z as parameter, prove that each side is Λ-periodic in the other variable and has same zeros and poles. Get multiplicative constant by considering Laurent expansion at zero.]

(ii) Deduce that $\psi'(z) = -\psi'(0)\psi(2z)/\psi(z)^3$ and recover from this formula the zeros of ψ'.

3.* Elliptic functions may be thought of as generalizations of trigonometric functions. To make this more precise, consider $\psi(z, it)$ for $t > 0$. Show that for each fixed z,
\[
\exp(\pi t/4)\psi(z, it) \rightarrow -2\sin(\pi z), \quad t \rightarrow \infty.
\]

This suggests the replacement
\[
\psi(z, it) = \psi_\infty(z) = -2\sin\pi z,
\]
\[
\chi(z, it) = \psi'(z, it)/\psi(z, it) \quad \text{by} \quad \chi_\infty(z) = \psi'_\infty(z)/\psi_\infty(z) = \pi\cot\pi z,
\]
\[
\varphi(z, it) = \text{const} - \chi'(z, it) \quad \text{(explain) by} \quad \varphi_\infty(z) = \text{const} - \chi'_\infty(z) = \text{const} + \pi^2/\sin^2\pi z.
\]

Verify that in order that $\varphi_\infty(z) = 1/z^2 + z^2 \cdot (\text{holomorphic function near zero})$,
we must have $\varphi_\infty(z) = \pi^2/\sin^2\pi z - \pi^2/3$.

Verify also that φ_∞ satisfies the differential equation for φ for suitable values of E_4 and E_6 (find these values!)

4. Denote by e_1, e_2, e_3 the values $\varphi(1/2), \varphi(\tau/2), \varphi((1 + \tau)/2)$ of φ at the half-periods.

(i) Show that $e_1 + e_2 + e_3 = 0$. Obtain expressions for $e_1^3 + e_2^3 + e_3^3$ and $e_1^2 + e_2^2 + e_3^2$ in terms of the coefficients g_2, g_3 of the differential equation $(\varphi'(z))^2 = 4\varphi^3(z) - 2g_2\varphi(z) - g_3$.

(ii)* Show that e_1, e_2, e_3 are pair-wise distinct. [Hint: the zeros of φ'.

5. Prove the addition theorem for φ,
\[
\begin{vmatrix}
1 & 1 & 1 \\
\varphi(u) & \varphi(v) & \varphi(w) \\
\varphi'(u) & \varphi'(v) & \varphi'(w)
\end{vmatrix} = 0
\]
if and only if two of u, v, w are congruent modulo Λ or $u + v + w \in \Lambda$.

[Hint: consider the determinant as a function of u with parameters v, w. The case $v + w \in \Lambda$ is exceptional (why?)].
6. Show that any holomorphic map \(f \) of degree 2 from an elliptic curve \(\mathbb{C}/\Lambda \) to \(S^2 \) is given by a ‘Möbius transformation of a shifted \(\wp \)-function’:
\[
 f(z) = \frac{a \wp(z - z_0) + b}{c \wp(z - z_0) + d},
\]
for some \(a, b, c, d, z_0 \in \mathbb{C} \).

7. Show, by considering the unit disc \(\Delta \) and the complex plane \(\mathbb{C} \), that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic).
Show that no two of the following domains in \(\mathbb{C} \) are conformally equivalent
\[
\{ 1 < |z| < 2 \}, \quad \{ 0 < |z| < 1 \}, \quad \{ 0 < |z| < \infty \}.
\]

8. (i) Let \(R \) and \(S \) be some Riemann surfaces, \(f : R \to S \) a continuous map, and \(p \) a point in \(R \). Show, directly from the definition of holomorphic maps, that if \(f \) is holomorphic on \(R \setminus \{ p \} \) then \(f \) is in fact holomorphic on all of \(R \).

(ii) Suppose that each of \(A = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \} \) and \(B = \{ \beta_1, \beta_2, \beta_3, \beta_4 \} \) is a set of four distinct points in \(S^2 \) and \(F : S^2 \setminus A \to S^2 \setminus B \) is a biholomorphic map. Show that \(F \) extends to a biholomorphic map of \(S^2 \) onto itself, hence the \(\beta_i \) is constrained to be in a finite subset of \(S^2 \) determined by the other \(\beta_i \)’s and \(\alpha_j \)’s.

9. Show that if \(R \) and \(S \) are Riemann surfaces such that both are connected, \(R \) is compact and \(S \) is non-compact then every holomorphic map \(f : R \to S \) is constant.

10. (i) Let \(R \) and \(S \) be compact connected Riemann surfaces and \(g : R \to S \) a non-constant holomorphic map. Show that the genus of \(R \) is greater or equal to the genus of \(S \).

(ii) Let \(R \) and \(S \) be compact connected Riemann surfaces, such that
\[
\text{genus}(R) = \text{genus}(S) = g.
\]
Show that if \(f : R \to S \) is a non-constant holomorphic map and \(g > 1 \) then \(f \) is biholomorphic. What does the argument give in the case when (a) \(g = 0 \) or (b) \(g = 1 \)?

(iii) Show that a holomorphic map \(f : S^2 \to S^2 \) of degree \(k \geq 2 \) must have ramification points (i.e. points \(p \in S^2 \) with \(\vartheta_f(p) > 1 \)); recover from this the answer to Q7 in ex. sheet 1.

11. (i) Let \(f \) and \(g \) be two elliptic functions (with the same lattice of periods) and \(N \) a positive integer. By considering the poles of \(f \) and \(g \), estimate from above the dimension of the complex vector space spanned by \(f(z)^m g(z)^n \), for \(0 \leq m, n \leq N \). Deduce that when \(N \) is sufficiently large there must be a non-trivial linear dependence,
\[
\sum_{m,n=0}^{N} a_{m,n} f(z)^m g(z)^n \equiv 0, \quad \text{for some} \ a_{m,n} \in \mathbb{C}.
\]
Hence show that any two meromorphic functions \(f, g \) on an elliptic curve \(\mathbb{C}/\Lambda \) are ‘algebraically related’: there is a polynomial \(Q \) in two variables, so that \(Q(f(z), g(z)) = 0 \) for all \(z \).

(ii)* Show that in fact (i) holds for meromorphic functions on any compact Riemann surface.

12. Recall from the Lectures that \(\vartheta(z, \tau) = \sum_{n=-\infty}^{\infty} \mathbf{e}(\frac{1}{2}n^2 \tau + nz) \), where \(\mathbf{e}(z) = \exp(2\pi iz) \) and \(\text{Im}(\tau) > 0 \). Show that if \(k \) is a positive integer then \(\vartheta(0, \tau)^k = \sum_{n=0}^{\infty} r_n(k)e^{\pi i nt} \), where \(r_n(k) \) is the number of ways to express the integer \(n \) as a sum of \(k \) squares.

Supervisors can obtain an annotated version of this example sheet from DPMMS.