(a.g.kovalev@dpmms.cam.ac.uk)

1. If \(f \) is a meromorphic doubly-periodic (i.e. elliptic) function of degree \(k > 0 \) show that \(f' \)
is an elliptic function whose degree \(\ell \) satisfies \(k + 1 \leq \ell \leq 2k \). Give examples to show that
both bounds are attained.

Recall from example sheet 1: \(\psi(z, \tau) = \sum_{n=\infty}^{\infty} e^{\frac{1}{2}(n + \frac{1}{2})^2 \tau} + (n + \frac{1}{2})(z + \frac{1}{2}) \) and satisfies
\(\psi(z + 1) = -\psi(z), \; \psi(z + \tau) = -e^{-(\frac{\tau}{2} - z)}\psi(z) \), where \(e(z) = \exp(2\pi iz) \), \(\psi(z) = -\psi(-z) \),
and has unique zero ‘modulo the lattice \(\mathbb{Z} + \tau\mathbb{Z} \).

2. (i) Prove that if \(z, w \in \mathbb{C} \), then
\[
\wp(z) - \wp(w) = -\wp'(0)^2 \frac{\psi(z - w)\psi(z + w)}{\psi(z)^2\psi(w)^2}.
\]
[Hint: Regarding one of \(w, z \) as parameter, prove that each side is \(\Lambda \)-periodic in the other
variable and has same zeros and poles. Get multiplicative constant by considering Laurent
expansion at zero.]
(ii) Deduce that \(\wp'(z) = -\wp'(0)^3 \frac{\psi(2z)}{\psi(z)^2} \) and recover from this formula the zeros of \(\wp' \).

3. Let \(\chi(z) = \psi'(z)/\psi(z) \). Differentiate 2(i) and interchange \(z \) and \(w \) to obtain:
\[
\frac{1}{2} \frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)} = \chi(z + w) - \chi(z) - \chi(w).
\]
Remark for readers of Ahlfors or Jones & Singerman: their \(\sigma \) and \(\zeta \) are not quite the same as
\(\psi \) and \(\chi \) here, but for some constants \(A, B, \sigma(z) = \exp(Az^2 + B)\psi(z) \), so \(\zeta(z) = 2Az + \chi(z) \).

4.* (challenging but feasible) Prove the addition formula for \(\wp \),
\[
\wp(z + w) = -\wp(z) - \wp(w) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)} \right)^2.
\]
[You will need to differentiate the formula in Q3 and use the differential equation satisfied by
\(\wp \) to eliminate \(\wp'' \). Note also that \(\wp = a - \chi' \), for some constant \(a \in \mathbb{C} \) (can you see why?).]

5.* Elliptic functions may be thought of as generalizations of trigonometric functions. To
make this more precise, consider \(\psi(z, it) \) for \(t > 0 \). Show that for each fixed \(z \),
\[
\exp(\pi t/4)\psi(z, it) \to -2\sin(\pi z), \; \text{as} \; t \to \infty.
\]
This suggests the replacement
\(\psi(z, it) \) by \(\psi_{\infty}(z) = -2\sin \pi z \),
\(\chi(z, it) \) by \(\chi_{\infty}(z) = \psi'_{\infty}(z)/\psi_{\infty}(z) = \pi \cot \pi z \),
\(\wp(z, it) \) by \(\wp_{\infty}(z) = \text{const} - \chi'_{\infty}(z) = \text{const} + \pi^2/\sin^2 \pi z \).
Verify that in order that \(\wp_{\infty}(z) = 1/z^2 + z^2 \cdot (\text{holomorphic function near zero}) \),
we must have \(\wp_{\infty}(z) = \frac{\pi^2}{\sin^2 \pi z} - \frac{\pi^2}{3} \).
Verify also that \(\wp_{\infty} \) satisfies the differential equation for \(\wp \) for suitable values of \(E_4 \) and \(E_6 \)
(find these values!).
6. Show that any holomorphic map \(f \) of degree 2 from an elliptic curve \(\mathbb{C}/\Lambda \) to \(S^2 \) is given by a ‘Möbius transformation of a shifted \(\wp \)-function’:

\[
f(z) = \frac{a \wp(z - z_0) + b}{c \wp(z - z_0) + d},
\]

for some \(a, b, c, d, z_0 \in \mathbb{C} \).

7. Show, by considering the unit disc \(\Delta \) and the complex plane \(\mathbb{C} \), that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic).
Show that no two of the following domains in \(\mathbb{C} \) are conformally equivalent

\[
\{ 1 < |z| < 2 \}, \quad \{ 0 < |z| < 1 \}, \quad \{ 0 < |z| < \infty \}.
\]

8. (i) Let \(R \) and \(S \) be some Riemann surfaces, \(f : R \to S \) a continuous map, and \(p \) a point in \(R \). Show, directly from the definition of holomorphic maps, that if \(f \) is holomorphic on \(R \setminus \{ p \} \) then \(f \) is in fact holomorphic on all of \(R \).
(ii) Suppose that each of \(A = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \} \) and \(B = \{ \beta_1, \beta_2, \beta_3, \beta_4 \} \) is a set of four distinct points in \(S^2 \) and \(F : S^2 \setminus A \to S^2 \setminus B \) is a biholomorphic map. Show that \(F \) extends to a biholomorphic map of \(S^2 \) onto itself, hence the \(\beta_i \) are constrained to be in a finite subset of \(S^2 \) determined by the other \(\beta_i \)'s and \(\alpha_j \)'s.

9. Show that if \(R \) and \(S \) are Riemann surfaces such that both are connected, \(R \) is compact and \(S \) is non-compact then every holomorphic map \(f : R \to S \) is constant.

10. (i) Let \(R \) and \(S \) be compact connected Riemann surfaces and \(g : R \to S \) a non-constant holomorphic map. Show that the genus of \(R \) is greater or equal to the genus of \(S \).

(ii) Let \(R \) and \(S \) be compact connected Riemann surfaces, such that

\[
genus(R) = \text{genus}(S) = g.
\]

Show that if \(f : R \to S \) is a non-constant holomorphic map and \(g > 1 \) then \(f \) is biholomorphic. What does the argument give in the case when (a) \(g = 0 \) or (b) \(g = 1 \)?

(iii) Show that a holomorphic map \(f : S^2 \to S^2 \) of degree \(k \geq 2 \) must have ramification points (i.e. points \(p \in S^2 \) with \(v_f(p) > 1 \)); recover from this the answer to Q7 in ex. sheet 1.

11. (i) Let \(f \) and \(g \) be two elliptic functions (with the same lattice of periods) and \(N \) a positive integer. By considering the poles of \(f \) and \(g \), estimate from above the dimension of the complex vector space spanned by \(f(z)^m g(z)^n \), for \(0 \leq m, n \leq N \). Deduce that when \(N \) is sufficiently large there must be a non-trivial linear dependence,

\[
\sum_{m,n=0}^{N} a_{m,n} f(z)^m g(z)^n \equiv 0, \quad \text{for some } a_{m,n} \in \mathbb{C}.
\]

Hence show that any two meromorphic functions \(f, g \) on an elliptic curve \(\mathbb{C}/\Lambda \) are ‘algebraically related’: there is a polynomial \(Q \) in two variables, so that \(Q(f(z), g(z)) = 0 \) for all \(z \).

(ii)* Show that in fact (i) holds for meromorphic functions on any compact Riemann surface.

12. Recall from the Lectures that \(\vartheta(z, \tau) = \sum_{n=0}^{\infty} e^{(\frac{1}{2}n^2 \tau + n z)} \), where \(e(z) = \exp(2\pi iz) \) and \(\text{Im}(\tau) > 0 \). Show that if \(k \) is a positive integer then \(\vartheta(0, \tau)^k = \sum_{n=0}^{\infty} r_n(k) e^{\pi i n \tau} \), where \(r_n(k) \) is the number of ways to express the integer \(n \) as a sum of \(k \) squares.

Supervisors can obtain an annotated version of this example sheet from DPMMS.