Representation Theory — Examples Sheet 4

On this sheet all representations are complex representations unless stated otherwise.

1. Let SU(2) act on the space $M_3(\mathbb{C})$ of 3×3 complex matrices by

$$A: X \mapsto A_1 X A_1^{-1},$$

where A_1 is the 3×3 block diagonal matrix with block diagonal entries A, 1. Show that this defines a representation of SU(2) and decompose it into irreducibles.

2. Let χ_n be the character of the irreducible representation of SU(2) of dimension n+1. Show that

$$\frac{1}{2\pi} \int_0^{2\pi} K(z) \overline{\chi_n} \chi_m \, \mathrm{d}\theta = \delta_{nm},$$

where $z = e^{i\theta}$ and $K(z) = -\frac{1}{2}(z - z^{-1})^2$.

3. Let G = SU(2) and V_n be the vector space of complex homogeneous polynomials of degree n in the variables x and y viewed as an irreducible representation of G.

(a) Show that V_n is isomorphic to its dual V_n^* as representations of G.

(b) Decompose the representations $V_4 \otimes V_3$, $V_3 \otimes V_3$, S^2V_3 and Λ^2V_3 into irreducibles.

(c) How do $V_1^{\otimes n}$, S^nV_1 , S^2V_n and Λ^2V_n decompose into irreducibles for $n \geq 1$. What about S^3V_2 ?

4. By considering the action of SU(2) by conjugation on the vector space of 2×2 complex matrices A such that $A = -\overline{A}^T$ and $\operatorname{tr} A = 0$, equipped with norm $||A||^2 = \det A$, construct a continuous group homomorphism $SU(2) \to SO(3)$. Deduce that $SU(2)/\{\pm I\} \cong SO(3)$ as topological groups.

5. Write down a Haar integral on SU(2) and prove that it is translation invariant and normalised correctly.

6. Let G be a compact group. Show that if G has an n-dimensional faithful representation over \mathbb{R} then there is a continuous faithful group homomorphism from G to the orthogonal group O(n).

7. Let $G = PSL_2(\mathbb{F}_7) = SL_2(\mathbb{F}_7)/Z(SL_2(\mathbb{F}_7))$. Starting with the character table of $GL_2(\mathbb{F}_7)$, calculate the character table of G. Deduce that G is simple. By considering the structure constants of $Z(\mathbb{C}G)$, and only using information in the character table, show that G has elements of order 2 and 3 whose product has order 7. Deduce that G is generated by two of its elements.

8. Let G be the topological group of 3×3 upper unitriangular real matrices

$$G := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

Show that every representation of G of degree 1 factors through G/Z(G).

Let

$$Z_0 := \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : z \in \mathbb{Z} \right\} \le G$$

By considering restriction from G/Z_0 to $Z(G)/Z_0 \cong S^1$ and determinants show that G/Z_0 has no faithful representations.

*9. Let \mathbb{F} be the field with 2^n elements for some $n \geq 1$. Construct the character table of $GL_2(\mathbb{F})$. Deduce that $PGL_2(\mathbb{F}) = GL_2(\mathbb{F})/Z(GL_2(\mathbb{F}))$ is simple for $n \geq 2$. What can you say about $PGL_2(\mathbb{F})$ when n = 1?

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.