Representation Theory - Examples Sheet 4

On this sheet all representations are complex representations unless stated otherwise.

1. Let $S U(2)$ act on the space $M_{3}(\mathbb{C})$ of 3×3 complex matrices by

$$
A: X \mapsto A_{1} X A_{1}^{-1}
$$

where A_{1} is the 3×3 block diagonal matrix with block diagonal entries $A, 1$. Show that this defines a representation of $S U(2)$ and decompose it into irreducibles.
2. Let χ_{n} be the character of the irreducible representation of $S U(2)$ of dimension $n+1$. Show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} K(z) \overline{\chi_{n}} \chi_{m} \mathrm{~d} \theta=\delta_{n m}
$$

where $z=e^{i \theta}$ and $K(z)=-\frac{1}{2}\left(z-z^{-1}\right)^{2}$.
3. Let $G=S U(2)$ and V_{n} be the vector space of complex homogeneous polynomials of degree n in the variables x and y viewed as an irreducible representation of G.
(a) Show that V_{n} is isomorphic to its dual V_{n}^{*} as representations of G.
(b) Decompose the representations $V_{4} \otimes V_{3}, V_{3} \otimes V_{3}, S^{2} V_{3}$ and $\Lambda^{2} V_{3}$ into irreducibles.
(c) How do $V_{1}^{\otimes n}, S^{n} V_{1}, S^{2} V_{n}$ and $\Lambda^{2} V_{n}$ decompose into irreducibles for $n \geq 1$. What about $S^{3} V_{2}$?
4. By considering the action of $S U(2)$ by conjugation on the vector space of 2×2 complex matrices A such that $A=-\bar{A}^{T}$ and $\operatorname{tr} A=0$, equipped with norm $\|A\|^{2}=\operatorname{det} A$, construct a continuous group homomorphism $S U(2) \rightarrow S O(3)$. Deduce that $S U(2) /\{ \pm I\} \cong S O(3)$ as topological groups.
5. Write down a Haar integral on $S U(2)$ and prove that it is translation invariant and normalised correctly.
6. Let G be a compact group. Show that if G has an n-dimensional faithful representation over \mathbb{R} then there is a continuous faithful group homomorphism from G to the orthogonal group $O(n)$.
7. Let $G=P S L_{2}\left(\mathbb{F}_{7}\right)=S L_{2}\left(\mathbb{F}_{7}\right) / Z\left(S L_{2}\left(\mathbb{F}_{7}\right)\right)$. Starting with the character table of $G L_{2}\left(\mathbb{F}_{7}\right)$, calculate the character table of G. Deduce that G is simple. By considering the structure constants of $Z(\mathbb{C} G)$, and only using information in the character table, show that G has elements of order 2 and 3 whose product has order 7 . Deduce that G is generated by two of its elements.
8. Let G be the topological group of 3×3 upper unitriangular real matrices

$$
G:=\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

Show that every representation of G of degree 1 factors through $G / Z(G)$.
Let

$$
Z_{0}:=\left\{\left(\begin{array}{ccc}
1 & 0 & z \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right): z \in \mathbb{Z}\right\} \leq G
$$

By considering restriction from G / Z_{0} to $Z(G) / Z_{0} \cong S^{1}$ and determinants show that G / Z_{0} has no faithful representations.
*9. Let \mathbb{F} be the field with 2^{n} elements for some $n \geq 1$. Construct the character table of $G L_{2}(\mathbb{F})$. Deduce that $P G L_{2}(\mathbb{F})=G L_{2}(\mathbb{F}) / Z\left(G L_{2}(\mathbb{F})\right)$ is simple for $n \geq 2$. What can you say about $P G L_{2}(\mathbb{F})$ when $n=1$?

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.

