Representation Theory - Examples Sheet 3

On this sheet all groups are finite and all representations are complex representations

1. Calculate $S^{2} V$ and $\Lambda^{2} V$ for the two-dimensional irreducible representations of D_{8} and of Q_{8}. Which has the trivial representation as a subrepresentation in each case?
2. Show both directly and using characters that if U, V and W are representations of G then

$$
V^{*} \otimes W \cong \operatorname{Hom}_{k}(V, W) \text { and } \operatorname{Hom}_{k}(V \otimes W, U) \cong \operatorname{Hom}_{k}\left(V, \operatorname{Hom}_{k}(W, U)\right)
$$

as representations of G. Deduce that if V is self-dual then either $S^{2} V$ or $\Lambda^{2} V$ contains a non-zero subrepresentation with trivial G-action.
3. Suppose $\rho: G \rightarrow G L(V)$ is an irreducible representation of G with character χ. By considering $V \otimes V, S^{2} V$ and $\Lambda^{2} V$ show that

$$
\frac{1}{|G|} \sum_{g \in G} \chi\left(g^{2}\right)= \begin{cases}0 & \text { if } \chi \text { is not real-valued } \\ \pm 1 & \text { if } \chi \text { is real valued }\end{cases}
$$

Deduce that if $|G|$ is odd then G has only one real-valued irreducible character.
4. Let $\rho: G \rightarrow G L(V)$ be a representation of G of dimension d.
(a) Compute $\operatorname{dim} S^{n} V$ and $\operatorname{dim} \Lambda^{n} V$ for all n.
(b) Let $g \in G$ and $\lambda_{1}, \ldots, \lambda_{d}$ be the eigenvalues of $\rho(g)$. What are the eigenvalues of g on $S^{n} V$ and $\Lambda^{n} V$?
(c) Let $f(t)=\operatorname{det}(t I-\rho(g))$ be the characteristic polynomial of $\rho(g)$. What is the relationship between the coefficients of f and $\chi_{\Lambda^{n} V}$?
(d) What is the relationship between $\chi_{S^{n} V}(g)$ and f ? (Hint: start with case $d=1$).
5. Recall the character table of D_{10} from sheet 2. Explain how to view D_{10} as a subgroup of A_{5} and then use induction from D_{10} to A_{5} to reconstruct the character table of A_{5}.
6. Obtain the character table of the dihedral group $D_{2 m}$ by using induction from the cyclic group C_{m}; you will want to split into two cases according as m is odd or even.
7. Find all the characters of S_{5} obtained by inducing irreducible representations of S_{4}. Use these to reconstruct the character table of S_{5}. Then repeat, replacing S_{4} by the subgroup $\langle(12345),(2354)\rangle$ of S_{5} of order 20 .
8. Prove that if H is a subgroup of a group G, and K is a subgroup of H, and W is a representation of K then $\operatorname{Ind}_{K}^{G} W \cong \operatorname{Ind}_{H}^{G} \operatorname{Ind}_{K}^{H} W$.
9. Let H be a subgroup of a group G. Show that for every irreducible representation (ρ, V) of G there is an irreducible representation (σ, W) of H such that ρ is an irreducible component of $\operatorname{Ind}_{H}^{G} W$.
Deduce that if A is an abelian subgroup of G then every irreducible representation of G has dimension at most $|G / A|$.
10. Suppose that G is a Frobenius group with Frobenius kernel K. Show that if V is a non-trivial irreducible representation of K then $\operatorname{Ind}_{K}^{G} V$ is also irreducible. Hence, explain how to construct the character table of G given the character tables of K and G / K.
11. Suppose that V is a faithful representation of a group G such that χ_{V} takes r distinct values. Show that each irreducible representation of G is a summand of $V^{\otimes n}$ for some $n<r$.
12. Suppose G is a finite group of odd order and with k conjugacy classes. Show that $|G| \equiv k \bmod 16$.

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.

