
MATHEMATICAL TRIPOS, PART II, 2020/2021
REPRESENTATION THEORY EXAMPLE SHEET 4

Unless otherwise stated, all vector spaces are finite-dimensional over C. In the first seven
questions we let G = SU(2). Questions 9–12 deal with a variety of topics at Tripos standard.

1 Let Vn be the vector space of complex homogeneous polynomials of degree n in the
variables x and y. Describe a representation ρn of G on Vn and show that it is irreducible.
What is its character? Show that Vn is isomorphic to its dual V ∗n .

2 Using the properties of exterior and symmetric powers, together with the Clebsch-Gordan
formula, decompose the following spaces into irreducible G-spaces (that is, find a direct sum
of irreducible representations which is isomorphic to the given G-space; you are not being
asked to find such an isomorphism explicitly).

(i) V4 ⊗ V3, V ⊗2
3 , Λ2V3;

(ii) V ⊗n1 ;
(iii) S2Vn, Λ2Vn (n > 1), S3V2

(iv) SnV1 for n > 1.

3 Let G act on the space M3(C) of 3× 3 complex matrices, by conjugation:

A : X 7→ A1XA
−1
1 ,

where A1 is the 3× 3 block diagonal matrix with block diagonal entries A, 1. Show that this
gives a representation of G and decompose it into irreducible summands.

4 Let χn be the character of the irreducible representation ρn of G on Vn of dimension
n+ 1.

Show that
1

2π

∫ 2π

0

K(z)χnχmdθ = δnm,

where z = eiθ and K(z) = 1
2
(z − z−1)(z−1 − z).

[ Note that all you need to know about integrating on the circle is orthogonality of characters:
1

2π

∫ 2π

0
zndθ = δn,0. This is really a question about Laurent polynomials. ]

5 Check that the usual formula for integrating functions defined on S3 ⊆ R4 defines a
G-invariant inner product on the vector space of integrable functions on

G = SU(2) =

{(
a b
−b̄ ā

)
: aā+ bb̄ = 1

}
,

and normalize it so that the integral over the group is one.

1
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6 Either of the following ways can be used to identify SO(3) with real projective 3-space
RP 3 (the topological space of lines passing through the origin in Rn+1), and hence show that
G/{±I2} ∼= SO(3).

(a) [Sketched in lectures: fill out the remaining details.] Let H0 = {ai+ bj+ ck : a, b, c ∈
R} be the 3-dimensional space of pure quaternions, and let the quaternions of unit length,
Q = {q : ||q|| = 1}, act on H0 by conjugation h 7→ qhq−1. Show that this defines a rotation
of S2 ⊆ H0, so that G/{±I2} = Q/{±I2} ∼= SO(3).

(b) [Needs some topological knowledge.]* First project S2 onto its equatorial plane by
(x, y, z) 7→ ζ = x+iy

1−z . Show that a rotation of S2 corresponds to a transformation of the form

ζ 7→ aζ+b
−bζ+ā . Note that with aā+ bb̄ = 1 we obtain an element of G and that (a, b) and (a′, b′)

determine the same transformation if and only if (a′, b′) = (−a,−b). Now replace G ∼= S3 by
the quotient space RP 3.

7 Compute the character of the representation SnV2 of G for any n > 0. Calculate
dimC(SnV2)G (by which we mean the subspace of SnV2 where G acts trivially).

Deduce that the ring of complex polynomials in three variables x, y, z which are invariant
under the action of SO(3) is a polynomial ring. Find a generator for this polynomial ring.

8 It is known that any finite subgroup of SO(3) is isomorphic to precisely one of the
following groups:

• the cyclic group Z/nZ, n > 1, generated by a rotation by 2π/n around an axis;
• the dihedral group D2m of order 2m, m > 2 (the group of rotational symmetries in

3-space of a plane containing a regular m-gon);
• A4, the group of rotations of a regular tetrahedron;
• S4, the group of rotations of a cube (or regular octahedron);
• A5, the group of rotations of a regular dodecahedron (or regular icosahedron).
Derive this classification (Hint: let G be a finite subgroup of SO(3) and consider the

action of G on the unit sphere.) By considering the homomorphism SU(2) → SO(3), classify
the finite subgroups of SU(2).
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9 The Heisenberg group of order p3 is the (non-abelian) subgroup

G =


 1 a x

0 1 b
0 0 1

 : a, b, x ∈ Fp

 .

of matrices over the finite field Fp (p prime). Let H be the subgroup of G comprising matrices
with a = 0 and Z be the subgroup of G of matrices with a = b = 0.

(a) Show that Z = Z(G), the centre of G, and that G/Z = F2
p. Note that this implies

that the derived subgroup G′ is contained in Z. [You can check by explicit computation that
it equals Z, or you can deduce this from the list of irreducible representations found in (d)
below.]

(b) Find all 1-dimensional representations of G.
(c) Let ψ : Fp → C× be a non-trivial 1-dimensional representation of the cyclic group

Fp = Z/p, and define a 1-dimensional representation ρψ of H by

ρψ

 1 0 x
0 1 b
0 0 1

 = ψ(x).

Show that IndGHρψ is an irreducible representation of G.
(d) Prove that the collection of representations constructed in (b) and (c) gives a com-

plete list of all irreducible representations.
(e) Determine the character of the irreducible representation IndGHρψ.

10 Recall the character table of G = PSL2(7) from Sheet 2, q.9. Identify the columns
corresponding to the elements x and y where x is an element of order 7 (eg the unitriangular
matrix with 1 above the diagonal) and y is an element of order 3 (eg the diagonal matrix
with entries 4 and 2).

The group G acts as a permutation group of degree 8 on the set of Sylow 7-subgroups
(or the set of 1-dimensional subspaces of the vector space (F7)2). Obtain the permutation
character of this action and decompose it into irreducible characters.

*(Harder) Show that the group G is generated by an element of order 2 and an element
of order 3 whose product has order 7.
[Hint: for the last part use the formula that the number of pairs of elements conjugate to x
and y respectively, whose product is conjugate to t, equals c

∑
χ(x)χ(y)χ(t−1)/χ(1), where

the sum runs over all the irreducible characters of G, and c = |G|2(|CG(x)||CG(y)||CG(t)|)−1.]

11 Let Jλ,n be the n× n Jordan block with eigenvalue λ ∈ K (K is any field):

Jλ,n =


λ 1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
...

. . . 1
0 · · · · · · 0 λ

 .

(a) Compute Jrλ,n for each r > 0.
(b) Let G be cyclic of order N , and let K be an algebraically closed field of characteristic

p > 0. Determine all the representations of G on vector spaces over K, up to equivalence.
Which are irreducible? Which are indecomposable?

Remark: Over C irreducibility and indecomposability coincide but this can fail for mod-
ular representations.
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12 [For enthusiasts only. Part (a) requires knowledge of Galois Theory.]*
(a) Let G be a cyclic group and let χ be a (possibly reducible) character of G. Let

S = {g ∈ G : G = 〈g〉} and assume that χ(s) 6= 0 for all s ∈ S. Show that∑
s∈S

|χ(s)|2 > |S|.

(b) Deduce a theorem of Burnside: namely, let χ be an irreducible character of G with
χ(1) > 1. Show that χ(g) = 0 for some g ∈ G. [Hint: partition G into equivalence classes by
calling two elements of G equivalent if they generate the same cyclic subgroup of G.]
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