MATHEMATICAL TRIPOS, PART II, 2020/2021 REPRESENTATION THEORY EXAMPLE SHEET 1

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional over a field F of characteristic zero, usually \mathbb{C}.

1 Let ρ be a representation of the group G.
(a) Show that $\delta: g \mapsto \operatorname{det} \rho(g)$ is a 1-dimensional representation of G.
(b) Prove that $G / \operatorname{ker} \delta$ is abelian.
(c) Assume that $\delta(g)=-1$ for some $g \in G$. Show that G has a normal subgroup of index 2.

2 Let $\theta: G \rightarrow F^{\times}$be a 1-dimensional representation of the group G, and let $\rho: G \rightarrow$ $\mathrm{GL}(V)$ be another representation. Show that $\theta \otimes \rho: G \rightarrow \mathrm{GL}(V)$ given by $\theta \otimes \rho: g \mapsto \theta(g) \cdot \rho(g)$ is a representation of G, and that it is irreducible if and only if ρ is irreducible.

3 Find an example of a representation of some finite group over some field of characteristic p, which is not completely reducible. Find an example of such a representation in characteristic 0 for an infinite group.

4 Let N be a normal subgroup of the group G. Given a representation of the quotient G / N, use it to obtain a representation of G. Which representations of G do you get this way?

Recall that the derived subgroup G^{\prime} of G is the unique smallest normal subgroup of G such that G / G^{\prime} is abelian. Show that the 1-dimensional complex representations of G are precisely those obtained from G / G^{\prime}.

5 Describe Weyl's unitary trick.
Let G be a finite group acting on a complex vector space V, and let $\langle\rangle:, V \times V \rightarrow \mathbb{C}$ be a skew-symmetric form, i.e. $\langle y, x\rangle=-\langle x, y\rangle$ for all x, y in V.

Show that the form $(x, y)=\frac{1}{|G|} \sum\langle g x, g y\rangle$, where the sum is over all elements $g \in G$, is a G-invariant skew-symmetric form.

Does this imply that every finite subgroup of $\mathrm{GL}_{2 m}(\mathbb{C})$ is conjugate to a subgroup of the symplectic group ${ }^{1} \mathrm{Sp}_{2 m}(\mathbb{C})$?

6 Let $G=\langle g\rangle$ be a cyclic group of order n.
(i) G acts on \mathbb{R}^{2} as symmetries of the regular n-gon. Choose a basis of \mathbb{R}^{2}, and write the matrix $R(g)$ representing the action of a generator g in this basis. Is this an irreducible representation?
(ii) Now regard $R(g)$ above as a complex matrix, so that we get a representation of G on \mathbb{C}^{2}. Decompose \mathbb{C}^{2} into its irreducible summands.

7 Let G be a cyclic group of order n. Explicitly decompose the complex regular representation of G as a direct sum of 1-dimensional representations, by giving the matrix of change of coordinates from the natural basis $\left\{e_{g}\right\}_{g \in G}$ to a basis where the group action is diagonal.

[^0]8 Let G be the dihedral group D_{10} of order 10,

$$
D_{10}=\left\langle x, y: x^{5}=1=y^{2}, y x y^{-1}=x^{-1}\right\rangle .
$$

Show that G has precisely two 1-dimensional representations. By considering the effect of y on an eigenvector of x show that any complex irreducible representation of G of dimension at least 2 is isomorphic to one of two representations of dimension 2. Show that all these representations can be realised over \mathbb{R}.

9 Let G be the quaternion group Q_{8} of order 8,

$$
Q_{8}=\left\langle x, y \mid x^{4}=1, y^{2}=x^{2}, y x y^{-1}=x^{-1}\right\rangle .
$$

By considering the effect of y on an eigenvector of x show that any complex irreducible representation of G of dimension at least 2 is isomorphic to the standard representation of Q_{8} of dimension 2.

Show that this 2-dimensional representation cannot be realised over \mathbb{R}; that is, Q_{8} is not a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.

10 Suppose that F is algebraically closed. Using Schur's lemma, show that if G is a finite group with trivial centre and H is a subgroup of G with non-trivial centre, then any faithful representation of G is reducible on restriction to H. What happens for $F=\mathbb{R}$?

11 Let G be a subgroup of order 18 of the symmetric group S_{6} given by

$$
G=\langle(123),(456),(23)(56)\rangle .
$$

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3. By considering quotients, show that G has two representations of degree 1 and four inequivalent irreducible representations of degree 2. Deduce that G has no faithful irreducible representations.

12 Show that if ρ is a homomorphism from the finite group G to $\mathrm{GL}_{n}(\mathbb{R})$, then there is a matrix $P \in \mathrm{GL}_{n}(\mathbb{R})$ such that $P \rho(g) P^{-1}$ is an orthogonal matrix for each $g \in G$. (Recall that the real matrix A is orthogonal if $A^{t} A=I$.)

Determine all finite groups which have a faithful 2-dimensional representation over \mathbb{R}.

Comments on and corrections to this sheet may be emailed to sm@dpmms.cam.ac.uk

[^0]: ${ }^{1}$ the group of all linear transformations of a $2 m$-dimensional vector space over \mathbb{C} that preserve a nondegenerate, skew-symmetric, bilinear form.

