Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional over a field \(F \) of characteristic zero, usually \(\mathbb{C} \).

1. Let \(\rho \) be a representation of the group \(G \).
 (a) Show that \(\delta : g \mapsto \det \rho(g) \) is a 1-dimensional representation of \(G \).
 (b) Prove that \(G/\ker \delta \) is abelian.
 (c) Assume that \(\delta(g) = -1 \) for some \(g \in G \). Show that \(G \) has a normal subgroup of index 2.

2. Let \(\theta : G \to F^* \) be a 1-dimensional representation of the group \(G \), and let \(\rho : G \to \text{GL}(V) \) be another representation. Show that \(\theta \otimes \rho : G \to \text{GL}(V) \) given by \(\theta \otimes \rho : g \mapsto \theta(g) \cdot \rho(g) \) is a representation of \(G \), and that it is irreducible if and only if \(\rho \) is irreducible.

3. (Counterexamples to Maschke’s Theorem)
 (a) Let \(FG \) denote the regular \(FG \)-module (i.e. the permutation module coming from the action of \(G \) on itself by left multiplication), and let \(F \) be the trivial module. Find all the \(FG \)-homomorphisms from \(FG \) to \(F \) and vice versa. By considering a submodule of \(FG \) isomorphic to \(F \), prove that whenever the characteristic of \(F \) divides the order of \(G \), there is a counterexample to Maschke’s Theorem.
 (b) Find an example of a representation of some finite group over some field of characteristic \(p \), which is not completely reducible. Find an example of such a representation in characteristic 0 for an infinite group.

4. Describe Weyl’s unitary trick.
 Let \(G \) be a finite group acting on a complex vector space \(V \), and let \(\langle \ , \ \rangle : V \times V \to \mathbb{C} \) be a skew-symmetric form, i.e. \(\langle y, x \rangle = -\langle x, y \rangle \) for all \(x, y \) in \(V \).
 Show that the form \((x, y) = \frac{1}{|G|} \sum (gx, gy) \), where the sum is over all elements \(g \in G \), is a \(G \)-invariant skew-symmetric form.
 Does this imply that every finite subgroup of \(\text{GL}_{2m}(\mathbb{C}) \) is conjugate to a subgroup of the symplectic group \(\text{Sp}_{2m}(\mathbb{C}) \)?

5. Let \(G = \mathbb{Z}/n \) be a cyclic group of order \(n \). Explicitly decompose the (complex) regular representation of \(G \) as a direct sum of 1-dimensional representations, by giving the matrix of change of coordinates from the natural basis \(\{ e_g \}_{g \in G} \) to a basis where the group action is diagonal.

6. Let \(G \) be the dihedral group \(D_{10} \) of order 10,
 \[D_{10} = \langle x, y : x^5 = 1 = y^2, yxy^{-1} = x^{-1} \rangle. \]
 Show that \(G \) has precisely two 1-dimensional representations. By considering the effect of \(y \) on an eigenvector of \(x \) show that any complex irreducible representation of \(G \) of dimension at least 2 is isomorphic to one of two representations of dimension 2. Show that all these representations can be realised over \(\mathbb{R} \).
7 Let G be the quaternion group Q_8 of order 8,

$$Q_8 = \langle x, y \mid x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle.$$

By considering the effect of y on an eigenvector of x show that any complex irreducible representation of G of dimension at least 2 is isomorphic to the standard representation of Q_8 of dimension 2.

Show that this 2-dimensional representation cannot be realised over \mathbb{R}; that is, Q_8 is not a subgroup of $\text{GL}_2(\mathbb{R})$.

8 Show that if G is a finite group with trivial centre and H is a subgroup of G with non-trivial centre, then any faithful representation of G is reducible on restriction to H.

9 Let G be a subgroup of order 18 of the symmetric group S_6 given by

$$G = \langle (123), (456), (23)(56) \rangle.$$

Show that G has a normal subgroup of order 9 and four normal subgroups of order 3. By considering quotients, show that G has two representations of degree 1 and four inequivalent irreducible representations of degree 2. Deduce that G has no faithful irreducible representations.

10 In this question work over the field $F = \mathbb{R}$.

Let G be the cyclic group of order 3.

(a) Write the regular $\mathbb{R}G$-module as a direct sum of irreducible submodules.

(b) Find all the $\mathbb{R}G$-homomorphisms between the irreducible $\mathbb{R}G$-modules.

(c) Show that the conclusion of Schur’s Lemma (‘every homomorphism from an irreducible module to itself is a scalar multiple of the identity’) is false if you replace \mathbb{C} by \mathbb{R}.

From now on let G be a cyclic group of order n. Show that:

(d) If n is even, the regular $\mathbb{R}G$-module is a direct sum of two (non-isomorphic) 1-dimensional irreducible submodules and $(n-2)/2$ (non-isomorphic) 2-dimensional irreducible submodules.

(e) If n is odd, the regular $\mathbb{R}G$-module is a direct sum of one 1-dimensional irreducible submodule and $(n-1)/2$ (non-isomorphic) 2-dimensional irreducible submodules.

[Hint: use the fact that $\mathbb{R}G \subset \mathbb{C}G$ and what you know about the regular $\mathbb{C}G$-module from question 5.]

11 Show that if ρ is a homomorphism from the finite group G to $\text{GL}_n(\mathbb{R})$, then there is a matrix $P \in \text{GL}_n(\mathbb{R})$ such that $P \rho(g) P^{-1}$ is an orthogonal matrix for each $g \in G$. (Recall that the real matrix A is orthogonal if $A^t A = I$.)

Determine all finite groups which have a faithful 2-dimensional representation over \mathbb{R}.
12 Let \(J_{\lambda,n} \) be the \(n \times n \) Jordan block with eigenvalue \(\lambda \in K \) (\(K \) is any field):

\[
J_{\lambda,n} = \begin{pmatrix}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & 1 & \\
0 & \cdots & \cdots & 0 & \lambda
\end{pmatrix}
\]

(a) Compute \(J_{\lambda,n}^r \) for each \(r \geq 0 \).

(b) Let \(G = \mathbb{Z}/N \) be cyclic of order \(N \), and let \(K \) be an algebraically closed field of characteristic \(p \geq 0 \). Determine all the representations of \(G \) on vector spaces over \(K \), up to equivalence. Which are irreducible?

13 A hermitian inner product on \(\mathbb{C}^2 \) is given by a \(2 \times 2 \) matrix \(X \) such that \(\bar{x}^T X = x^T \bar{X} \); the inner product is \(\langle x, y \rangle = x^T X \bar{y} \). Explicitly find a hermitian inner product invariant under the group \(G \leq \text{GL}_2(\mathbb{C}) \) generated by the matrix

\[
\begin{pmatrix}
-1 & -1 \\
1 & 0
\end{pmatrix}
\]

[Hint: average the standard hermitian inner product.]

SM, Lent Term 2014

Comments on and corrections to this sheet may be emailed to sm@dpmms.cam.ac.uk