

Representation Theory IIB, Sheet 1

IG, 2006

February 13, 2006

G is a group; vector spaces are finite-dimensional and the field of scalars is \mathbb{C} , unless otherwise stated.

1.1 Question

Let ρ be a representation of G . Show that $\det \rho$ is a 1-dimensional representation of G .

1.2 Question

Let $\rho : \mathbb{Z} \rightarrow GL(2; \mathbb{C})$ be the representation of \mathbb{Z} defined by $\rho(1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Show that ρ is not completely reducible.

1.3 Question

Let $\theta : G \rightarrow \mathbb{C}^\times$ be a one-dimensional representation of G , and let ρ be another representation on a vector space V .

Show that $\theta \otimes \rho : G \rightarrow GL(V)$, $(\theta \otimes \rho)(g) := \theta(g) \cdot \rho(g)$ is also a representation, and is irreducible if and only if ρ is.

1.4 Question

Let N be a normal subgroup of G . Given a representation of G/N , define a representation of G , and describe which representations of G arise in this way.

1.5 Question

(a) (*Weyl's unitary trick*) Let V be a representation of the finite group G and let $\langle \cdot | \cdot \rangle$ be any inner product on V . Show that the averaged inner product $\langle \cdot | \cdot \rangle'$ defined by

$$\langle \mathbf{v} | \mathbf{w} \rangle' = \frac{1}{|G|} \sum_{g \in G} \langle g\mathbf{v} | g\mathbf{w} \rangle$$

is G -invariant.

(b) Can you conclude by a similar argument that every even-dimensional representation of G carries an invariant, non-degenerate *skew-symmetric* bilinear form?

(A skew-symmetric form satisfies $\langle \mathbf{v} | \mathbf{w} \rangle = -\langle \mathbf{w} | \mathbf{v} \rangle$, and it is non-degenerate if for any $\mathbf{v} \in V \setminus \{0\}$ there exists $\mathbf{w} \in V$ with $\langle \mathbf{v} | \mathbf{w} \rangle \neq 0$.)

1.6 Question

Let G be a cyclic group of order n . Decompose the regular representation explicitly as a sum of one-dimensional representation, by giving the matrix of change of coordinates from the natural basis $\{e_g\}_{g \in G}$ to a basis where the group action is diagonal.

1.7 Question

Let X be a finite set with G -action and ρ_X the associated permutation representation (on the vector space $\mathbb{C}[X]$, with basis $\{\mathbf{e}_x\}_{x \in X}$. Show that the value at $g \in G$ of the character of ρ_X is the number of fixed points of g in X .

1.8 Question

- Show that if $\rho : G \rightarrow GL_n(\mathbb{R})$ is a homomorphism, then there exists a matrix $P \in GL_n(\mathbb{R})$ such that $P\rho(g)P^{-1}$ is an orthogonal matrix for each $g \in G$. (Recall that A is orthogonal if $A^T A = I$).
- Determine all finite groups which have a faithful representation on a two dimensional *real* vector space.

1.9 Question

Let $G = \mathbb{Z}/M \times \mathbb{Z}/N$. Determine all the irreducible complex representations of G .

1.10 Question

Let $G = \mathbb{Z}/N$. G acts on \mathbb{R}^2 as rotations of the plane. Choose a basis of \mathbb{R}^2 , and write the matrix $\rho(1)$ representing the action of $1 \in \mathbb{Z}/N$ in this basis.

- Is this an irreducible representation?
- Now regard $\rho(1)$ as a complex matrix, so that this defines a representation on \mathbb{C}^2 . Decompose this into irreducible summands.

1.11 Question

A A 2-by-2 matrix X such that $\overline{X}^T = X$ defines a hermitian inner product on \mathbb{C}^2 by $\langle x, y \rangle = x^T X \bar{y}$.

Explicitly find a Hermitian inner product invariant under the group G generated by the matrix $\begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$.

1.12 Question

Do all the exercises set in lectures!!

1.13 Question

Let G be a finite abelian group and denote by \widehat{G} the set of isomorphism classes of irreducible G -representations.

- Show that \widehat{G} forms an abelian group, under the tensor product of representations (as in Question 2)
- If G is cyclic of order n , what can you say about \widehat{G} ?
- Fix $g \in G$. Show that the map $\widehat{G} \rightarrow \mathbb{C}^\times$ sending a representation χ to the value of $\chi(g)$ is a group homomorphism, and conclude that this assignment defines a homomorphism $G \rightarrow \widehat{\widehat{G}}$
- Show that this homomorphism is an isomorphism.
- Show that a homomorphism $\phi : G \rightarrow H$ of abelian groups induces a homomorphism $\widehat{\phi} : \widehat{H} \rightarrow \widehat{G}$, by sending $\chi : H \rightarrow \mathbb{C}^\times$ to $\widehat{\chi} := \chi \circ \phi$, and that $\widehat{\phi}$ is surjective iff ϕ is injective.