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Probability and Measure 3

1. Let Cn denote the nth approximation to the Cantor set C: thus C0 = [0, 1], C1 = [0, 13 ] ∪ [23 , 1],

C2 = [0, 19 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪ [89 , 1], etc. and Cn ↓ C as n → ∞. Denote by Fn the distribution

function of a random variable uniformly distributed on Cn. Show that:
(a) C is uncountable and has Lebesgue measure 0;
(b) for all x ∈ [0, 1], the limit F (x) = limn→∞ Fn(x) exists;
(c) the function F is continuous on [0, 1], with F (0) = 0 and F (1) = 1;
(d) for almost all x ∈ [0, 1], F is differentiable at x with F ′(x) = 0.

Hint: express Fn+1 recursively in terms of Fn and use this relation to obtain a uniform estimate
on Fn+1 − Fn.

2. We consider the unit circle of R2. We pick randomly a point on A on the circle, and then
randomly another point B on the circle. We describe the random experiment using Ω = [0, 2π[2,

A = B([0, 2π[2), P (dw) = dθdθ′

4π2 .
(i) Compute the law of the r.v X=length of the chord [AB].
(ii) Compute P (X >

√
3).

3. We consider the unit disc of R2. Put the following random experiment in equations: pick a point
C in the unit disc, let A,B be the unique points on the unit disc such that C is the middle of [AB],
then compute the probability that the chord [AB] has length >

√
3.

4(*). Let Ω = {1, . . . , 6}N∗ = {w = (w1, . . . , w6 ∈ {1, . . . , 6}}. We equip Ω with the σ-algebra A
generated by the sets Ai1,...,in = {w ∈ Ω, w1 = i1, . . . , wn = in}, n ≥ 1.

(i) Show using the map φ(w) =
∑∞

k=1
wk−1
6k

that Ω is uncontable.
(ii) Compute the image of Ai1,...,in by φ.
(iii) Study the injectivity of φ. Construct a probability measure onA such that ∀n ≥ 1, P (Ai1,...,in) =
1
6n .
(iv) Show that the map defined for w ∈ Ω by X(w) = inf{j, wj = 6} is a discrete real r.v.
(v) Compute P (X = k) and the probability of the set {X =∞}. Is this set empty?

5. Let X be a random variable and let 1 ≤ p < ∞. Show that, if X ∈ Lp(P), then P(|X| ≥ λ) =
O(λ−p) as λ→∞. Prove the identity

E(|X|p) =

∫ ∞
0

pλp−1P(|X| ≥ λ)dλ

and deduce that, for all q > p, if P(|X| ≥ λ) = O(λ−q) as λ→∞, then X ∈ Lp(P).
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6. The zeta function is defined for s > 1 by ζ(s) =
∑∞

n=1 n
−s. Let X and Y be independent random

variables with
P(X = n) = P(Y = n) = n−s/ζ(s).

Write An for the event that n divides X. Show that the events (Ap : p prime) are independent and
deduce Euler’s formula

1

ζ(s)
=
∏
p

(
1− 1

ps

)
.

Show also that P(X is square-free) = 1/ζ(2s). Write H for the highest common factor of X and
Y . Show finally that P(H = n) = n−2s/ζ(2s).

7. The moment generating function φ of a real-valued random variable X is defined by φ(τ) =
E(eτX), τ ∈ R. Suppose that φ is finite on an open interval containing 0. Show that φ has
derivatives of all orders at 0 and that X has finite moments of all orders given by

E(Xn) =

(
d

dτ

)n ∣∣∣∣
τ=0

φ(τ).

8. Let X = (X1, . . . , Xd) be a r.v with value in Rd with Xj ∈ L2(Ω,A, P ). Let the covariance
matrix be KX = (cov(Xi, Xj))1≤i,j≤d.
(i) Show that KX is a symmetric positive matrix.
(ii) Let M be a (deterministic) n× d matrix. Let Y = MX, show that KY = AKXA

t.

9. Let X = (X1, . . . , Xd) where Xj is a real valued square integrable r.v. Show that its characteristic
function ΦX is twice differentiable with

ΦX(ξ) = 1 + i
d∑
j=1

ξjE[Xj ]−
1

2

d∑
j=1

d∑
k=1

ξjξkE[XjXk] + o(|ξ|2).

10. Let a symmetric definite positive square matrix A ∈ Md(R). Let X be a Gaussian variable

with Gaussian law p(x) = e−
1
2 (A−1x|x)√

(2π)ddet(A)
, x ∈ Rd. Compute the characteristic function of X.

11. Determine which of the following distributions on R have an integrable characteristic function:
N(µ, σ2), Bin(N, p), Poisson(λ), U[0, 1].

12. (i) Let ψ(x) = Ce
− 1

1−x2 for |x| < 1 and ψ(x) = 0 otherwise, where C is a constant chosen so
that

∫
R ψ(x)dx = 1. For f ∈ L1(R) of compact support, show that f ∗ ψ is C∞ and has compact

support.

(ii) Let σ > 0, x ∈ R. gσ(x) = 1
σ
√
2π
e−

x2

2σ2 . Show that ∀φ ∈ Cb(R) (ie continuous bounded), ∀x ∈ R,

limσ→0 gσ ? φ(x) = φ(x).

13. Let (Xn : n ∈ N) be independent N(0, 1) random variables. Prove that

lim sup
n

(
Xn/

√
2 log n

)
= 1 a.s.


