
PROBABLITY AND MEASURE

PIERRE RAPHAËL

1. σ-algebra and the monotone class Lemma

Definition 1.1 (σ-algebra). Let E be a set. A σ-algebra (or tribe) on E is a family
A ⊂ P(E) such that
(i) E ∈ A
(ii) A ∈ A ⇒ Ac = E\A ∈ A
(iii) An ∈ A ⇒ ∪n≥0An ∈ A

Definition 1.2 (Generating set). Let C ⊂ P(E), we let σ(C) be the smallest σ-
algebra containing C.

Definition 1.3 (Borel σ-algebra). If E is a topological space, we let B(E) be the
σ-algebra generated by the open sets of E.

Definition 1.4 (Product σ-algebra). Given (E1,A1), (E2,A2), we let

A1 ⊗A2 = σ ({A1 ×A2, A1 ∈ A1, A2 ∈ A2}) .

Proposition 1.5. If E1, E2 are separable metric spaces, then B(E1) ⊗ B(E2) =
B(E1 × E2).

Definition 1.6 (Monotone class). A familyM⊂ P(E) is a monotone class if:
(i) E ∈M
(ii) A,B ∈M and A ⊂ B imply B\A ∈M.
(iii) An ∈M increasing family implies ∪n≥0An ∈M.

Definition 1.7. Let C ⊂ P(E), we let M(C) be the smallest monotone class con-
taining C.

Lemma 1.8. A monotone class is a σ-algebra iff it is stable by finite intersection.

Proposition 1.9 (Monotone class Lemma). Let C ⊂ P (E) stable by finite intersec-
tion, thenM(C) = σ(C).

2. Measure

Definition 2.1 (Measure). A (positive) measure on (E,A) is a map µ : A → [0,∞]
with:
(i) µ(∅) = 0
(ii) An ∈ A two by two disjoint then µ(tn≥0An) =

∑
n≥0 µ(An).

Proposition 2.2. Let (E,A, µ) be a measure space.
(i) Let An be an increasing family An ⊂ An+1 then µ (∪n≥0An) = limn→∞ µ(An).
(ii) Let Bn be a decreasing family Bn+1 ⊂ Bn with µ(B0) < +∞ then µ (∩n≥0Bn) =
limn→∞ µ(Bn).

Definition 2.3 (Probability measure). We say µ is finite if µ(E) < +∞. If µ(E) =
1, we call µ a probability.
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Definition 2.4 (σ-finite). We say µ is σ-finite if there exists an increasing sequence
En with ∪n≥0En = E and ∀n, µ(En) < +∞.

Definition 2.5 (Negligible set ). A set N ⊂ E is negligible if there exists A ∈ A
with µ(A) = 0 such that N ⊂ A. A property is said to hold a.e if the set of points
x ∈ E where it does not hold is negligible.

Definition 2.6 (Completeness). We say µ is complete if A contains all the negligible
sets.

Proposition 2.7 (Uniqueness of measures). Let µ, ν be two measures on (E,A).
Assume:
(i) A = σ(C) with C stable by finite intersection;
(ii) ∀A ∈ C, µ(A) = ν(A);
then we can conclude that µ = ν on the full σ-algebra A whenever one of the
following two conditions holds:
(i) µ(E) = ν(E) < +∞
(ii) ∃ an increasing sequence En ⊂ C with E = ∪n≥0En and ∀n, µ(En) < +∞.

3. Measurable functions

Definition 3.1 (Measurable spaces). Let (E,A), (F,B) be two measurable spaces.
A map f : E → F is measurable if ∀B ∈ B, f−1(B) ∈ A.

Proposition 3.2. The composition of two measurable functions is measurable.

Proposition 3.3. Assume B = σ(C), then f is measurable iff ∀B ∈ C, f−1(B) ∈ A.

Proposition 3.4. A continuous function f : (E,B(E))→ (F,B(F )) is measurable.

Lemma 3.5. Let f1 : (E,A) 7→ (F1,B1) and f2 : (E,A) 7→ (F2,B2). Then f :
(E,A) 7→ (F1 × F2,B1 ⊗ B2) defined by f(x) = (f1(x), f2(x)) is measurable iff each
component f1, f2 is measurable.

Lemma 3.6. Let f, g : (E,A) → (R,B(R)) be two measurable functions, then the
following functions are measurable:
(i) any linear combination of (f, g);
(ii)fg;
(iii) f+ = max(f, 0), f− = max(−f, 0).

Definition 3.7 (lim sup, lim inf). We let

lim sup
n→∞

an = lim
n→∞

↓

(
sup
k≥n

ak

)
= inf

n≥0

(
sup
k≥n

ak

)
and

lim inf
n→∞

an = lim
n→∞

↑
(

inf
k≥n

ak

)
= sup

n≥0

(
inf
k≥n

ak

)
.

Proposition 3.8. Let fn be a sequence a measurable functions from (E,A) to(
R,B(R)

)
, then:

(i) the functions
sup
n≥0

fn, inf
n≥0

fn, lim sup
n→∞

fn, lim inf
n→∞

fn

are also measurable. In particular, (fn → f pointwise⇒ f measurable);
(ii) the set {x ∈ E; fn(x) has a limit as n→∞} is measurable.
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Definition 3.9 (Measure tranported by an application). Let f : (E,A) → (F,B)
be a measurable function and µ a measure on (E,A). The image measure of µ by
f, noted f∗(µ) (sometimes f(µ)) is the measure defined by

∀B ∈ B, f∗µ(B) = µ(f−1(B)).

4. Integration

4.1. Integration of positive functions.

Definition 4.1 (Simple function). Let (E,A, µ) measure space. A function f :
(E,A)→ R is called simple if

f =
N∑
j=1

αj1Aj , Aj ∈ A and tnj=1 Aj = E

for some αj ∈ R. If the values αj are distinct, this is the canonical representation
of f .

Definition 4.2 (Integral of simple functions). Let f simple valued in R+, we define∫
fdµ =

n∑
j=1

αjµ(Aj)

with the convention: (αj = 0, µ(Aj) = +∞) ⇒ αjµ(Aj) = 0. This number does
not depend on the representation of f . We let E+ be the set of positive (≥ 0) simple
functions.

Definition 4.3 (Integral of a positive function). Let (E,A, µ) measure space and
f : (E,A)→ R+ a positive measurable function. We define∫

fdµ = sup
h∈E+,h≤f

∫
hdµ.

Lemma 4.4 (Basic properties). There holds:
(i) f ≥ g ⇒

∫
fdµ ≥

∫
gdµ.

(ii) µ ({x ∈ E, f(x) > 0}) = 0⇒
∫
fdµ = 0.

Theorem 4.5 (Monotone convergence). Let (E,A, µ) measure space and fn :
(E,A) → R+ an increasing sequence of positive (≥ 0) measurable functions. Let
f = limn ↑ fn, then ∫

fdµ = lim
n→∞

↑
∫
fndµ.

Proposition 4.6 (Approximation by simple functions). Let f be measurable positive,
then there exists an increasing sequence fn of positive simple functiona such that
∀x ∈ E, limn→∞ fn(x) = f(x).

Proposition 4.7 (Basic properties). All functions are assumed to be measurable
positive on (E,A, µ) measure space.
(i) ∀a, b ≥ 0,

∫
(af + bg)dµ = a

∫
fdµ+ b ∈ gdµ.

(ii)
∫ (∑

n≥0 fn

)
dµ =

∑
n≥0

∫
fndµ.

(iii) (Markov) µ ({x ∈ E, f(x) ≥ a}) ≤ 1
a

∫
fdµ.

(iv)
∫
fdµ <∞⇒ f <∞ a.e.

(v)
∫
fdµ = 0⇒ f = 0 a.e.

(vi) f = g a.e ⇒
∫
fdµ =

∫
gdµ.
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Theorem 4.8 (Fatou). Let (E,A, µ) measure space and fn measurable positive,
then ∫ (

lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

(∫
fndµ

)
.

4.2. Integration of real valued functions.

Definition 4.9 (Integral of real valued functions). Let (E,A, µ) measure space and
f : E → R. We say that f is integrable if

∫
|f |dµ < +∞ and we then define∫

fdµ =

∫
f+dµ−

∫
f−dµ

where f+ = max{f, 0}, f− = max{−f, 0}. We note L1(E,A, µ) the space of real
valued integrable functions.

Proposition 4.10 (Linearity). L1(E,A, µ) is a vector space and f →
∫
fdµ is a

linear form.

Proposition 4.11 (Basic properties). Let f, g ∈ L1(E,A, µ).
(i)
∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ.

(ii) f ≤ g ⇒
∫
fdµ ≤

∫
gdµ.

(iii) f = g a.e ⇒
∫
fdµ =

∫
gdµ.

Theorem 4.12 (Lebesgue’s dominated convergence). Let fn ∈ L1(E,A, µ) such
that:
(i) ∃f real valued measurable with limn→∞ fn(x) = f(x) a.e.;
(ii) ∃g : E → R+ ∈ L1(E,A, µ) such that ∀n, |fn(x)| ≤ g(x) a.e..
Then f ∈ L1(E,A, µ) and

lim
n→∞

∫
|fn − f | = 0.

4.3. Integral depending on a parameter.

Theorem 4.13 (Continuity below the integral sign). Let (E,A, µ) a measure space
and (U, d) a metric space. Let f : U × E → R and u0 ∈ U . Assume:
(i) ∀u ∈ U , the map x 7→ f(u, x) is measurable;
(ii) a.e x ∈ E, the map u 7→ f(x, u) is continuous at u0;
(iii) ∃g ∈ L1

+(E,A, µ) such that ∀u ∈ U , |f(u, x)| ≤ g(x) a.e..
Then the function F (u) =

∫
f(u, x)dµ is well defined for all u ∈ U and continuous

at u0.

Theorem 4.14 (Derivability below the integral sign). Let (E,A, µ) a measure space
and I ⊂ R an open interval. Let f : I × E → R and u0 ∈ I. Assume:
(i) ∀u ∈ I, the map x 7→ f(u, x) is in L1(E,A, µ);
(ii) a.e x ∈ E, the map u 7→ f(x, u) is differentiable at u0 with derivative noted
∂f
∂u(u0, x);
(iii) ∃g ∈ L1

+(E,A, µ) such that ∀u ∈ I, |f(u, x)− f(u0, x)| ≤ g(x)|u− u0| a.e..
Then the function F (u) =

∫
f(u, x)dµ is differentiable at u0 with

F ′(u0) =

∫
∂f

∂u
(u0, x)dµ.

5. Construction of measures

Proof is this section are non examinable, but statements are examinable.
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5.1. Lebesgue measure.

Definition 5.1 (Outer measure). Let E be a set. A map µ∗ : P(E) → [0,∞] is
called an outer measure if:
(i) µ∗(∅) = 0
(ii) µ∗ is increasing: A ⊂ B ⇒ µ∗(A) ≤ µ∗(B).
(iii) µ∗ is σ sub additive: ∀Ak ⊂ E, µ∗(∪k≥0Ak) ≤

∑
k≥0 µ

∗(Ak).

Definition 5.2 (Measurability). A set B ⊂ E is called µ∗-measurable if

∀A ⊂ E, µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc).

We letM(µ∗) be the set of µ∗-measurable sets.

Theorem 5.3 (Construction of a measure from an outer measure). M(µ∗) is a
σ-algebra in E and the restriction of µ∗ toM(µ∗) is a complete measure.

Theorem 5.4 (Lebesgue measure on R). We define

∀A ⊂ R, λ∗(A) = inf

{∑
i∈N

(bi − ai), A ⊂ ∪i∈N]ai, bi[

}
.

Then:
(i) λ∗ is an outer measure on R.
(ii) B(R) ⊂M(λ∗).
(iii) ∀a ≤ b, λ∗(]a, b[) = λ∗([a, b]) = b− a.
The restriction of λ∗ toM(λ∗) is called the Lebesgue measure on R.

Definition 5.5. Let (E,A, µ) be a measure space, we let A = σ(A ∪ N ) where N
are the µ-negligible sets of E.

Proposition 5.6. The Lebesgue tribeM(λ∗) is identical to B(R).

Proposition 5.7. Let f : R → R Borelian. Let g : R → R such that g = f λ-a.e,
then g is measurable for B(R).

5.2. Link to Riemann.

Definition 5.8 ([Riemann integrability). Let I ⊂ R be an interval and f : I → R
bounded. Let ∣∣∣∣ S−(f) = sup{

∫
I h(x)dx, h stair, h ≤ f}

S+(f) = inf{
∫
I h(x)dx, h stair, h ≥ f}.

We say that f is Riemann integrable if

S+(f) = S−(f)

and then the Riemann integral of f is S(f) = S±(f).

Proposition 5.9 (Relation to Riemann). Let f : I → R Riemann integrable, then
f is measurable for B(I) and S(f) =

∫
I fdλ.

5.3. An example of non measurable set.

Proposition 5.10. Let R/Q be the set of equivalence class for the relation x ∼
y ⇔ x − y ∈ Q. Let F = {xa, a ∈ R/Q} where xa ∈ [0, 1] is a representant of the
equivalence class of a. Then F is not Lebesgue measurable.

Remark 5.11. The existence of F requires the axiom of choice because R/Q is
uncountable, and this is necessary to construct Lebesgue non measurable sets.
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5.4. Lebesgue-Stieltjes measures.

Proposition 5.12. Let (E, d) be a metric space and µ a finite measure on (E,B(E)).
Then for all A ∈ B(E):

µ(A) = inf{µ(U), U open , A ⊂ U} = sup{µ(F ), F closed , F ⊂ A}

Theorem 5.13 (Lebesgue-Stieltjes). The following hold.
(i) Let µ be a finite measure on (R,B(R), then its distribution function

∀x ∈ R, Fµ(x) = µ(]−∞, x])

is increasing, bounded, continuous on the right and limx→−∞ Fµ(x) = 0.
(ii) Given F : R → R increasing, bounded, continuous on the right and with
limx→−∞ F (x) = 0, then there exists a unique finite Borelian measure µ such that
Fµ = F , and then

F (b)− F (a) = µ(]a, b]).

6. Lp spaces

Definition 6.1 (Lp(E,A, µ), 1 ≤ p <∞). Let (E,A, µ) be a measure space.
(i) Given p ∈ [1,∞[, we define

Lp(E,A, µ) = {f : E → R measurable with
∫
|f |pdµ < +∞.}

(ii) We define ‖f‖p =
(∫
|f |pdµ

) 1
p .

(iii) We let Lp(E,A, µ) = Lp(E,A, µ)/ ∼ for f ∼ g ⇔ f = g µa.e.

Definition 6.2 (L∞(E,A, µ), 1 ≤ p < +∞). Let (E,A, µ) be a measure space.
(i) We define

L∞(E,A, µ) = {f : E → R measurable, ∃C ∈ R+, |f | ≤ C µ− a.e.}

(ii) We define ‖f‖∞ = inf{C ∈ R+, |f | ≤ C µ− a.e.}.
(iii) We let L∞(E,A, µ) = L∞(E,A, µ)/ ∼ for f ∼ g ⇔ f = g µa.e.

Proposition 6.3 (Hölder). The following hold.
(i) ∀1 ≤ p, p′ ≤ ∞,

∫
|fg|dµ ≤ ‖f‖p‖g‖p′ for 1

p + 1
p′ = 1.

(ii) ∀1 ≤ p, pi ≤ ∞, ‖ΠN
i=1fi‖p ≤ ΠN

i=1‖fi‖pi for 1
p =

∑N
i=1

1
pi
.

(iii) ∀1 ≤ p1, p2 ≤ ∞, ‖f‖p ≤ ‖f‖αp1‖f‖
1−α
p2 for 1

p = α
p1

+ 1−α
p2

.

Theorem 6.4 (Riesz-Fischer). For all 1 ≤ p ≤ +∞, (Lp(E,A, µ), ‖ · ‖p) is a
Banach space (ie a complete normed vector space). For p = 2,

(
L2(E,A, µ), 〈·, ·〉2

)
is a Hilbert space (ie a complete space equipped with a scalar product) for the scalar
product 〈f, g〉2 =

∫
E fgdµ.

Proposition 6.5. Let fn, f ∈ Lp(E,A, µ) with limn→+∞ ‖fn−f‖p = 0. Then there
exists a subsequence φ(n) strictly increasing such that limn→+∞ fφ(n)(x) = f(x) for
µ-a.e x ∈ E.

Proposition 6.6 (Dense subsets). The following holds.
(i) Let 1 ≤ p ≤ ∞, then simple functions are dense in Lp(E,A, µ).
(ii) Let 1 ≤ p < ∞, then C∞c (Rd) is dense in Lp(Rd,B(Rd), λ) where λ is the
Lebesgue measure (and this is obviously false for p =∞).
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7. Product measure and Fubbini’s theorem

7.1. Product measure and Fubbini. We let (E1,A1), (E2,A2) be two measur-
able spaces.

Definition 7.1 (Horizontal and vertical slices of sets). Let B ⊂ E1 × E2.
(i) For x ∈ E1, the vertical slice is Bx = {y ∈ E2, (x, y) ∈ B}.
(i) For y ∈ E2, the horizontal slice is By = {x ∈ E1, (x, y) ∈ B}.

Definition 7.2 (Horizontal and vertical slices of functions). Let f : E1 ×E2 → F .
(i) For x ∈ E1, we let fx = f(x, ·) : E2 → F .
(i) For y ∈ E2, we let fy = f(·, y) : E1 → F .

Theorem 7.3 (Fubini measurability). The following hold.
(i) Pick B ∈ A1 ⊗A2, then ∀x ∈ E1, Bx ∈ A2 and ∀y ∈ E2, By ∈ A1.
(i) Let f(E1 × E2,A1 ⊗ A2) → (F,B) measurable, then ∀x ∈ E1, fx : (E2,A2) →
(F,B) is measurable, and ∀y ∈ E2, fy : (E1,A1)→ (F,B) is measurable.

Theorem 7.4 (Construction of the product measure). Let µ, ν be two σ-finite mea-
sures on resp. (E,A) and (F,B).
(i) There exists a unique measure m on (E × F,A⊗A) such that

∀A ∈ A, ∀B ∈ B, m(A×B) = µ(A)ν(B)

with the usual convention 0 ·∞ = 0. This measure is called the product measure and
is σ-finite, we note it µ⊗ ν.
(ii) For all C ∈ A⊗ B,

µ⊗ ν(C) =

∫
E
ν(Cx)µ(dx) =

∫
F
µ(Cy)ν(dy).

Theorem 7.5 (Fubini-Tonnelli). Let µ, ν be two σ-finite measures on resp. (E,A)
and (F,B). Let f : E × F → [0,∞] a measurable function.
(i) The functions x ∈ E 7→

∫
F f(x, y)ν(dy) andy ∈ F 7→

∫
F f(x, y)µ(dx) are resp.

A-measurable and B-measurable.
(ii) There holds∫

E×F
fdµ⊗ dν =

∫
E

[∫
F
f(x, y)ν(dy)

]
µ(dx) =

∫
F

[∫
E
f(x, y)µ(dx)

]
ν(dy).

Theorem 7.6 (Fubini-Lebesgue). Let µ, ν be two σ-finite measures on resp. (E,A)
and (F,B). Let f ∈ L1(E × F,A⊗ B, µ⊗ ν).
(i) For µ a.e x ∈ E, fx ∈ L1(F,B, ν) and ν a.e y ∈ F , fy ∈ L1(E,A, µ).
(ii) The function x 7→

∫
F f(x, y)ν(dy) is well defined for µ a.e x ∈ E and belongs

to L1(E,A, µ). The function y 7→
∫
E f(x, y)µ(dx) is well defined for ν a.e y ∈ F

and belongs to L1(F,B, ν).
(iii) There holds∫

E×F
fdµ⊗ dν =

∫
E

[∫
F
f(x, y)ν(dy)

]
µ(dx) =

∫
F

[∫
E
f(x, y)µ(dx)

]
ν(dy).

7.2. Applications.

Definition 7.7 (Convolution). Let f, g : Rd → R measurable. For x ∈ Rd, we
define the convolution product by

f ? g(x) =

∫
f(x− y)g(y)dy.
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Proposition 7.8. Let f, g ∈ L1(Rd,B(Rd), λ), then for λ a.e x ∈ Rd, the convolu-
tion f ? g(x) is well defined. Moreover, f ? g ∈ L1(Rd,B(Rd), λ) with

‖f ? g‖L1 ≤ ‖f‖L1‖g‖L1 .

Proposition 7.9 (Young’s inequality). Ler 1 ≤ r, p, q ≤ +∞ with 1 + 1
r = 1

p + 1
q ,

then
‖f ? g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Definition 7.10 (Approximation of identity). We say a sequence of functions φn :
Rd → R is an approximation of identity if:
(i) φn ≥ 0;
(ii) there exists K ⊂ Rd compact such that Suppφn ⊂ K;
(iii) ∀δ > 0, limn→∞

∫
|x|<δ φn(x)dx = 0.

Proposition 7.11 (Density of smooth functions in Lp(Rd)). Let φn be an ap-
proximation of identity. Let 1 ≤ p < ∞. Then for all f ∈ Lp(Rd,B(Rd), λ),
φn ? f ∈ C∞(Rd,R) and limn→∞ ‖fn − f‖Lp = 0.

8. Properties of the Lebesgue measure

Theorem 8.1 (Change of variables formula). Let φ : U → D C1 diffeomorphism.
Then for all Borelian function f : D → R+ or integrable f ∈ L1(D,λ), there holds∫

D
f(x)dx =

∫
U
f [φ(u)] |Jφ(u)|du.

Theorem 8.2 (Measure on the sphere). Let λd be the Lebesgue measure λd on Rd.
(i) For every Borelian A ∈ B(Sd−1),

wd(A) = dλd [Γ(A)]

where Γ(A) = {rz; z ∈ A, r ∈ [0, 1]}, defines a finite measure on Sd−1, invariante
by the linear isometries of Rd, and with

wd(S
d−1) =

2π
d
2

Γ
(
d
2

) .
(ii) For every Borelian positive (or integrable) function f on Rd, there holds∫

Rd
f(x)dλ(x) =

∫ ∞
0

∫
Sd−1

f(rx)rd−1drdwd(z).

9. Random variables

9.1. Basic definitions. We fix once and for all (Ω,A, P ) probability space.

Definition 9.1 (Random variable). Let (Ω,A) and (E, E). A measurable map
X : (Ω,A) → (E, E) is called a random variable with value in E. If E = R, we
speak of real random variable,

Definition 9.2 (Law). The law of a random variable X is the probablity image of
P by X:

∀B ∈ E , PX(B) = P (X ∈ B) = P
(
X−1)(B)

)
.
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Remark 9.3. If E is countable (ie the r.v is discrete), then

PX =
∑
x∈E

P (X = x)δx

where δx is for x ∈ E the measure

∀B ∈ E , δx(B) =

∣∣∣∣ 1 if x ∈ B
0 otherwise

Definition 9.4 (Density of a r.v). A r.v with value in (Rd,B(Rd)) is said to have
a law with density p if

dPX = p(x)dx⇔ ∀BE , PX(B) =

∫
B
p(x)dx.

(dx is Lebesgue)

Definition 9.5 (Expectation). Let X be a real r.v. We define its expectation by

E[X] =

∫
Ω
X(w)P (dw).

Proposition 9.6. Let X be a r.v with value in (E, E) and f : (E, E)→ [0,∞], then

E [f(X)] =

∫
E
f(x)PX(dx).

Proposition 9.7 (Marginals). Let X = (X1, . . . , Xd) be a r.v. with value in Rd.
Assume that the law of X has density p(x1, . . . , xd), then ∀j ∈ {1, . . . , d}, the law
of Xj has density

pj(x) =

∫
Rd−1

p(x1, . . . , xj−1, x, xj+1, . . . , xd)dx1 . . . dxj−1dxj+1 . . . dxd.

9.2. Classical laws.

Definition 9.8 (Discrete laws). The following are classical examples of discrete
laws.

(i) Uniform law. Let E be a set with #E = n, a r.v has uniform law if ∀x ∈ E,
P (X = x) = 1

n .

(ii)Bernoulli. Let p ∈ [0, 1], this is the law of a r.v X with value in {0, 1} such that

P (X = 1)p, P (X = 0) = 1− p.

It is intepreted as the result after one throw of a biaised coin which falls on head
with probability p.

(iii) Binomial B(n, p), n ∈ N∗, p ∈ [0, 1] It is the law of a r.v with values in {1, . . . , n}
such that

P (X = k) = (1− p)pk.
It is interpreted as the number of heads obtained after n throws of the biaised coin.

(iv) Poisson’s law of parameter λ > 0. It is the law of a r.v with value in N and

P (X = k) =
λk

k!
e−λ.
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It corresponds to the number of rare events during a long period. Mathematically,
if Xn follows the law B(n, pn) and npn → λ as n→ +∞, then

lim
n→∞

P (Xn = k) =
λk

k!
e−λ.

Definition 9.9 (Continuous laws). The following are classical examples of contin-
uous laws. Let X be a r.v with value in R and density p(x).

(i) Uniform law on [a, b], a < b: p(x) = 1
b−a1[a,b](x).

(ii) Exponential law with parameter λ > 0: p(x) = λe−λx1R+ .. Exponential laws
have the "no memory" property

P (X > a+ b) = P (X > a)P (X > b).

(iii) Gaussian law N (m,σ2), m ∈ R, σ > 0:

p(x) =
1

σ
√

2π
exp

(
−(x−m)2

2σ2

)
.

The parameters m,σ are interpreted as

m = E[X], σ2 = E[(X −m)2].

By convention, we say that a r.v. constant equal to m follows the Gaussian law
N (m, 0). If X follows N (m,σ2),

∀λ, µ ∈ R, λX + µ follows N (λm+ µ, λ2σ2).

9.3. Structural definitions.

Definition 9.10 (Distribution function). Let X be a real r.v, its distribution func-
tion is FX : R→ [0, 1] given by

FX(t) = P (X ≤ t) = PX(]−∞, t]), ∀t ∈ R.

It is increasing, continuous on the right with limt→−∞ FX(t) = 0, limt→+∞ FX(t) =
1. Moreover, ∣∣∣∣ P (a ≤ X ≤ b) = FX(b)− FX(a−) for a ≤ b

P (a < X < b) = FX(b−)− FX(a) for a < b.

Definition 9.11. Let X be a r.v valued in (E, E), the σ-algebra generated by X is

σ(X) = {X−1(B), B ∈ E}.

If (Xi)i∈I is a family of r.v valued in (Ei, Ei), the σ-algebra generated by the family
is the smallest σ-algebra which makes all Xi measurable ie

σ [(Xi)i∈I ] = σ
({
X−1
i (Bi), Bi ∈ Ei

})
.

Proposition 9.12. Let X r.v valued in (E, E) and Y real r.v. TFAE:
(i) Y is σ(X) measurable;
(ii) there exists f : (E, E)→ (R,B(R)) measurable such that Y = f(X).
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9.4. Moments and variance.

Remark 9.13. Theorems of integration in probababilistic language:
(i) Monotone convergence: Xn ≥ 0, Xn ↑ X ⇒ E(Xn) ↑ E(X).
(ii) Fatou: Xn ≥ 0⇒ E[lim inf Xn] ≤ lim inf E[Xn].
(iii) Lebesgue: |Xn| ≤ Z,E[Z] < +∞, Xn → X a.e ⇒ E[Xn]→ E[X].

(iv) Hölder: E[|XY |] ≤ (E[|X|p])
1
p

(
E[|X|p′ ]

) 1
p′ for 1

p + 1
p

′
= 1, 1 ≤ p, p′ ≤ +∞.

(v) Lp embeddings: ‖X‖r ≤ ‖X‖p for 1 ≤ r ≤ p ≤ +∞.

Definition 9.14 (variance). Let X ∈ L2(Ω,A, P ). The variance is

var(X) = E
[
(X − E[X])2

]
and the standard deviation is

σX =
√

var(X).

Lemma 9.15. var(X) = infa∈RE[(X − a)2].

Remark 9.16. Classical inequalities in probabilistic language:
(i) Markov: P (X ≥ a) ≤ E[X]

a .
(ii) Bienayme-Tchebicheff: if X ∈ L2(Ω,A, P ), P (|X − E(X)| ≥ a) ≤ var(X)

a2
.

Definition 9.17 (covariance). Let X,Y ∈ L2(Ω,A, P ), their covariance is

cov(X,Y ) = E [(X − E[X])]E [(Y − E[Y ])] = [XY ]− E[X]E[Y ].

If X = (X1, . . . , Xd) has coordinates in Xi ∈ L2(Ω,A, P ), then the matrix covari-
ance is

KX = (cov(Xi, Xj))1≤i,j≤n .

Proposition 9.18 (Linear regression). Let (X,Y1, . . . , Yn) be real r.v in L2(Ω,A, P ).
Then

inf
β0,...,βn∈R

E
[

(X − (β0 + β1Y1 + · · ·+ βnYn))2
]

= E
[
(X − Z)2

]
where

Z = E[X] +
n∑
j=1

αj(Yj − E[Yj ])

and (αj)1≤j≤n is any solution to the system
n∑
j=1

αjcov(Yj , Yk) = cov(X,Yk), 1 ≤ k ≤ n.

9.5. Characteristic function.

Definition 9.19. Let f ∈ L1(Rd), we let f̂(ξ) =
∫
Rd e

−ix·ξf(x)dx.

Lemma 9.20 (Inverse Fourier transform). Let f ∈ C∞c (Rd), then

f(x) =
1

(2π)d

∫
Rd
eix·ξ f̂(ξ)dξ.

Lemma 9.21 (Plancherel). Let f, g ∈ C∞c (Rd), then∫
Rd
f(x)g(x)dx =

1

(2π)d

∫
Rd
f̂(ξ)ĝ(ξ)dξ.

This allows us to uniquely extend the Fourier as a continuous isomorphism of L2.



12 P. RAPHAËL

Definition 9.22 (Characteristic function). Let X be a r.v valued in Rd, its char-
acteristic function is the function ΦX : Rd → C defined by

ΦX(ξ) = E
[
eix·ξ

]
=

∫
Rd
eix·ξPX(dx).

Lemma 9.23 (Characteristic function of one dimensional Gaussian). Let X be a
real r.v with las N (0, σ2), then

ΦX(ξ) = e−
σ2ξ2

2 .

Theorem 9.24. The characteristic function of a r.v valued in Rd characterizes the
law of this r.v. Equivalently, the Fourier transform defined on the space of probability
measure on Rd is injective.

The proof relies on the following (density related) statement.

Proposition 9.25. Let µ, ν be two probability measures on Rd. Assume that for all
test function φ ∈ Cb(Rd) (ie continuous bounded and real valued),∫

Rd
φdµ =

∫
Rd
φdν

then µ = ν.

Proposition 9.26. Let X = (X1, . . . , Xn) r.v valued in Rd and square integrable.
Then ΦX is C2 and

ΦX(ξ) = 1 + i

n∑
j=1

ξjE[Xj ]−
1

2

d∑
j=1

d∑
k=1

ξjξkE[XjXk] + o(|ξ|2).

Definition 9.27 (Generating function). Let X r.v valued in N. The generating
function of X is the function gX : [0, 1]→ R+ given by

gX(r) = E[rX ] =
∑
n≥0

P (X = n)rn.

10. Independance

10.1. Definitions.

Definition 10.1 (Independance of events). We say n events A1, . . . , An are inde-
pendent iff for all {j1, . . . , jp} ⊂ {1, . . . , n},

P
(
Aj1 ∩ · · · ∩Ajp

)
= P (Aj1) . . . P (Ajp).

Lemma 10.2. The n events A1, . . . , An are independent iff

P (B1 ∩ · · · ∩Bn) = P (B1) . . . P (Bn)

whenever Bi ∈ σ(Ai) ≡ {∅, Ai, Aci ,Ω}, ∀i ∈ {1, . . . , n}.

Definition 10.3 (Independance of tribes). Let B1, . . . ,Bn be sub σ-algebra of A.
We say they are independent iff

∀A1 ∈ B1, . . . , An ∈ Bn, P (A1 ∩ · · · ∩An) = P (A1) . . . P (An).

Definition 10.4 (Independance of re.v). Let X1, . . . , Xn be r.v with values in
(E1, E1), . . . , (En, En). We say they are independent iff

∀F1 ∈ E1, . . . , Fn ∈ En, P ({X1 ∈ F1} ∩ · · · ∩ {Xn ∈ Fn}) = P (X1 ∈ F1) . . . P (Xn ∈ Fn).
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Remark 10.5. (i) Let B1, . . . ,Bn family of independent sub σ-algebra, then if Xi

Bi-measurable r.v, then (X1, . . . , Xn) are independent.
(ii) Events A1, . . . , An are independent iff the sub σ-algebra (σ(A1), . . . , σ(An)) are.

Definition 10.6. Let (Bi)i∈I an arbitrary family of sub σ-algebra, we say that the
family is independent iff ∀{i1, . . . , ip}, (B1, . . . ,Bip) are independent. We say a an
arbitrary family (Xi)i∈I of r.v is independent iff (σ(Xi))i∈I is.

Corollary 10.7. Let (Xn)n∈N a family of independent r.v, then ∀p ≥ 1,

B1 = σ(X1, . . . , Xp), B2 = σ(Xp+1, Xp+2, . . . )

are independent.

10.2. Characterization of independance.

Theorem 10.8 (Characterization with law). The r.v (X1, . . . , Xn) are independent
iff the law of X = (X1, . . . , Xn) is the product of the law of the Xi’s:

PX = PX1 ⊗ · · · ⊗ PXn .
In this case, for all fi ≥ 0 measurable on (Ei, Ei), 1 ≤ i ≤ n:

E
[
Πn
i=1fi(Xi)

]
= Πn

i=1E [fi(Xi)] .

Corollary 10.9. Let X1, X2 be two L2 integrable r.v, then cov(X1, X2) = 0.

Theorem 10.10 (Characterization with densities). Let (X1, . . . , Xn) real r.v.
(i) Assume that ∀i ∈ {1, . . . , n}, the law of Xi has density pi, and (X1, . . . , Xn) are
independant. Then the law of X = (X1, . . . , Xn) is

p(x1, . . . , xn) = Πn
i=1pi(xi).

(ii) Conversely, assume that the law of X = (X1, . . . , Xn) has a density of the form

p(x1, . . . , xn) = Πn
i=1qi(xi)

for some Borelian positive functions qi. Then (X1, . . . , Xn) are independant and
∀i ∈ {1, . . . , n}, the law of Xi has density pi = Cipi for some constant Ci > 0.

Remark 10.11. Let (X1, . . . , Xn) real r.v, then TFAE:
(i) (X1, . . . , Xn) are independent.
(ii) ∀a1, . . . , an ∈ R, P (X1 ≤ a1, . . . , Xn ≤ an) = Πn

i=1P (Xi ≤ ai).
(iii) For all f1, . . . , fn continuous bounded from R to R+, E

[
Πn
i=1fi(Xi)

]
= Πn

i=1E [fi(Xi)] .

(iv) The characteristic function ofX = (X1, . . . , Xn) is ΦX(ξ1, . . . , ξn) = Πn
i=1ΦXi(ξi).

Proposition 10.12. Let B1, . . . ,Bn be sub σ-algebra of A. Assume:
(i) ∀i ∈ {1, . . . , n}, there exists Ci ⊂ Bi monotone class stable by finite intersection
with σ(Ci) = Bi;
(ii) ∀C1 ∈ C1, . . . , Cn ∈ Cn, P (C1 ∩ · · · ∩ Cn) = P (C1) . . . P (Cn).
Then B1, . . . ,Bn are independent.

Corollary 10.13 (Regrouping). Let B1, . . . ,Bn independent sub σ-algebra. Then
for all 0 < n1 < · · · < np = n, the sub σ-algebra∣∣∣∣∣∣∣∣

D1 = B1 ∨ · · · ∨ Bn1 ≡ σ(B1 ∨ · · · ∨ Bn1)
D2 = Bn1+1 ∨ · · · ∨ Bn2

. . .
Dp = Bnp−1+1 ∨ · · · ∨ Bnp

are independent.
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Corollary 10.14. If (X1, . . . , Xn) are independent, then the r.v

Y1 = (X1, . . . , Xn1), . . . , Yp = (Xnp−1+1, . . . , Xnp)

are also independent.

Definition 10.15 (Independance for an infinite family). (i) Let (Bi)i∈I be an ar-
bitrary sub family of tribes of A. We say that this family is independent if for all
{i1, . . . , ip}, (Bi1 , . . . ,Bip) is an independent family.
(ii) We say an arbitrary family (Xi)i∈I is independent of the family of tribes (σ(Xi))i∈I
is.

Proposition 10.16. Let (Xn)n≥1 be a family of independent r.v. Then for all
integer p ∈ N, the tribes B1 = σ(X0, . . . , Xp) and B2 = σ(Xp+1, Xp+2, . . . ) are
independent.

10.3. Borel Cantelli.

Lemma 10.17 (Borel Cantelli). Let (An)n∈N a family of events, and define∣∣∣∣ lim supAn = ∩∞n=0 (∪∞k=nAk)
lim inf An = ∪∞n=0 (∩∞k=nAk)

(i) If
∑

n∈N P (An) < +∞, then P (lim supAn) = 0. Equivalently,

a.s, {n ∈ N, w ∈ An} is finite.

(ii)If
∑

n∈N P (An) = +∞ and the events An are independent, then
P (lim supAn) = 1. Equivalenlty,

a.s, {n ∈ N, w ∈ An} is infinite.

10.4. Sum of independent random variables.

Definition 10.18 (Convolution of measures). Let µ, ν be two probability measures
on Rd, then µ ? ν is the image of µ⊗ ν by the map (x, y)→ x+ y. Equivalently, for
any positive measurable φ:∫

Rd
φ(z)µ ? ν(dz) =

∫
Rd

∫
Rd
φ(x+ y)ν(dx)ν(dy).

Proposition 10.19. Let X,Y be two independent r.v with value in Rd.
(i) The law of X + Y is PX ? PY . In particular, if PX has density pX and PY has
density py, then PX+Y has density pX ? pY .
(ii) The characteristic function of X+Y is ΦX+Y (ξ) = ΦX(ξ)ΦY (ξ). (Equivalently,
if µ, ν are two probability measures on Rd, then µ̂ ? ν = µ̂ν̂.).
(iii) If X,Y are square integrable, then KX+Y = KX+KY . In particular, for d = 1,
var(X + Y ) = var(X) + var(Y ).

Theorem 10.20 (Weak law of large numbers). Let (Xn)n≥1 be a family of real
valued independent r.v with same law. If E(X2

1 ) < +∞, then

X1 + · · ·+Xn

n

L2

−−−→
n→∞

E[X1].

Proposition 10.21. Let (Xn)n≥1 be a family of real valued independent r.v with
same law. If E(X4

1 ) < +∞, then

a.s
X1 + · · ·+Xn

n
→ E[X1].
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Definition 10.22 (Convolution semi group). A family of probability measures (µt)t∈I
is said to be a convolution semi group if∣∣∣∣ µ0 = δ0

µt ? µt′ = µt+t′ , ∀t, t′ ∈ I

Lemma 10.23. For (µt)t∈I to be a convolution semi group, it is enough that:
(i) if I = N, µ̂t(ξ) = [φ(ξ)]t, ∀t ∈ I.
(ii) if I = R, µ̂t(ξ) = e−tφ(ξ), ∀t ∈ I.

Examples.
(i) For I = N and n > 0, let µn be the binomial law B(n, p) (where p ∈ [0, 1] has
been fixed), then µn+m = µn ?µm can be seen by computing µ̂n(ξ) = (peiξ+1−p)n.
(ii) For I = R+, t ∈ R+, let µt be the Poisson law of parameter t, then

µ̂t(ξ) =

+∞∑
k=0

tk

k!
eikξe−t = e−t(1−e

iξ),

(iii) For I = R+, t > 0, let µt be the Gaussian law N (0, t), then

µ̂t(ξ) = e−
tξ2

2 .

Important consequences. Let X,Y be two independent real r.v.
(i) If X follows Poisson of parameter λ and Y follows Poisson of parameter λ′, then
X + Y follows Poisson of parameter λ+ λ′.
(ii) If X follows the Gaussian law N (m,σ2) and X ′ follows the Gaussian law
N (m′, (σ′)2), then X +X ′ follows the Gaussian law N (m+m′, σ2 + (σ′)2).

11. Convergence of random variables

11.1. Convergence in probability. We have already introduced

Xn
a.s−−−→

n→∞
X ⇔ P

(
{x ∈ Ω : lim

n→∞
Xn(w) = X(x)}

)
= 1

and for 1 ≤ p < +∞

Xn
Lp−−−→

n→∞
⇔ lim

n→∞
E [|X −Xn|p] = 0.

Definition 11.1 (Convergence in probability). We say Xn converges to X in prob-
ability

Xn
(P )−−−→
n→∞

X

ifs
∀ε > 0, lim

n→∞
P (|Xn −X| > ε) = 0.

Proposition 11.2 (Completeness). Let L0
Rd(Ω,A, P ) be the quotient of the space of

all r.v with value in Rd quotiented by the equivalence relation X ∼ Y ⇔ X = Y a.s..
Then:
(i) d(X,Y ) = E [|X − Y | ∧ 1] defines a distance on L0

Rd(Ω,A, P ), and this metric
space is complete.

(ii) limn→∞ d(Xn, X) = 0⇔ Xn
(P )−−−→
n→∞

X.

Lemma 11.3. If Xn converges a.s to X (or in Lp), then it also converges in prob-
ability. Conversely, if Xn converges in probability to X, then there exists a subse-
quence Xnk which converges a.s to X.
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11.2. Strong law of large numbers.

Theorem 11.4 (Kolmogorov’s 0-1 law). Let (Xn)n≥1 be a sequence of independent
r.v. Let for n ≥ 1

Bn = σ (Xk, k ≥ n) ,

then the asymptotic tribe
B∞ = ∩n≥1Bn

is rough in the sense that

∀B ∈ B∞, P (B) ∈ {0, 1}.

Theorem 11.5 (Strong law of large numbers, a.e version). Let (Xn)n≥1 be a se-
quence of real independent r.v. with same law and E[|X1|] < +∞, then

X1 + · · ·+Xn

n

a.s−−−→
n→∞

E[X1].

11.3. Convergence in law.

Definition 11.6 (Test function). (i) We let Cb(Rd) be the space of continuous
bounded functions from Rd → R equipped with the sup norm

‖φ‖L∞ = sup
x∈Rd

|φ(x)|.

(ii) We let Cc(Rd) the subset of Cb(Rd) of continuous functions with compact support
(where we recall Supp(f) = {x ∈ Rd, f(x) 6= 0}.)

Definition 11.7 (Convergence in law). (i) We say a sequence (µn)n≥1 of probability

measures over Rd converges in distribution to a probability measure µ (µn
(D)−−−→
n→∞

µ)
iff

∀φ ∈ Cb(Rd), lim
n→∞

∫
φdµn =

∫
φdµ.

(ii) We say a sequence of r.v. (Xn)n≥1 with value in Rd converges in law (or in

distribution) to X iff PXn
(D)−−−→
n→∞

PX . Equivalently,

∀φ ∈ Cb(Rd), lim
n→∞

E [φ(Xn)] = E [φ(X)] .

Lemma 11.8. Let (µn, µ) be probability measures on Rd. TFAE:
(i) µn

(D)−−−→
n→∞

µ;
(ii) ∀G open, lim inf µn(G) ≥ µ(G);
(iii) ∀F closed, lim supµn(F ) ≤ µ(F );
(iv) ∀B Borelian with µ(∂B) = 0, limn→∞ µn(B) = µ(B) where ∂B = B\B̊.

Proposition 11.9. A sequence of r.v. (Xn)n≥1 with value in Rd converges in law
to X iff the distribution functions FXn(x) converges to FX(x) at every point x where
FX is continuous.

Proposition 11.10 (Weakening test functions). Let (µn)n≥1, µ be probality mea-
sures over Rd. Let H be a subspace of Cb(Rd) which closure (for the sup norm)
contains Cc(Rd). Then TFAE:

(i) µn
(D)−−−→
n→∞

µ.

(ii) ∀φ ∈ Cc(Rd), limn→∞
∫
φdµn =

∫
φdµ.

(iii) ∀φ ∈ H, limn→∞
∫
φdµn =

∫
φdµ.
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Theorem 11.11 (Levy). (i) A sequence of probability measures (µn)n≥1 converges
in distribution to a probability measure µ iff

∀ξ ∈ Rd, lim
n→∞

µ̂n(ξ) = µ̂(ξ).

(ii) A sequence of r.v. (Xn)n≥1 with value in Rd converges in law (or in distribution)
to X iff

∀ξ ∈ Rd, lim
n→∞

ΦXn(ξ) = ΦX(ξ).

11.4. Central limit theorem.

Theorem 11.12 (Scalar central limit theorem). Let (Xn)n≥1 be a sequence of real
r.v independent with same law, X1 ∈ L2. Let σ2 = var(X1), then

X1 + · · ·+Xn − nE[X1]√
n

(law)−−−→
n→∞

N (0, σ2).

Equivalently, ∀a < b,

lim
n→∞

P
(
X1 + · · ·+Xn ∈ (nE[X1] + a

√
n, nE[X1] + b

√
n)
)

=
1

σ
√

2π

∫ b

a
e−

x2

2σ2 dx.

Definition 11.13 (Gaussian centered vector). Let C be a square d× d symmetric
positive matrix, with real valued entries. A square integrable r.v valued in Rd is said
to be a centered Gaussian vector with covariance C if

∀ξ ∈ Rd, ΦX(ξ) = e−
1
2

t
ξCξ.

We also say that X follows the law N (0, C).

Remark 11.14. X ∼ N (0, C)⇒ (E[X] = 0,KX = C).

Lemma 11.15 (Existence of Gaussian centered vectors). Let A =
√
C and (Yi)1≤i≤d

independent real r.v following the law N (0, 1), then X = AY follows N (0, C).

Theorem 11.16 (Vectorial central limit theorem). Let (Xn)n≥1 be a sequence of
r.v valued in Rd independent with same law, X1 ∈ L2, C = KX1, then

X1 + · · ·+Xn − nE[X1]√
n

(law)−−−→
n→∞

N (0, C).

12. Ergodic theory

12.1. Basic results.

Definition 12.1. Let (E, E ,Γ) be a measure space.
(i) A map θ : E → E is called measure preserving if: ∀A ∈ E , Γ(θ−1)(A)) = Γ(A).
In this case,

∀f ∈ L1,

∫
E
fdΓ =

∫
E
f ◦ θdΓ.

(ii) A measurable function f is called θ-invariant if f = f ◦ θ.
(iii) A set A ∈ E is called θ-invariant if θ−1(A) = A. The family Eθ of θ-invariant
sets is a σ-algebra and f invariant iff f is Eθ-measurable.

Definition 12.2. The map θ is called ergodic if

A ∈ Eθ ⇒ (Γ(A) = 0 or Γ(E\A) = 0).

Remark 12.3. f θ-invariant for θ ergodic implies f constant Γ-a.e.
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Theorem 12.4 (Birkhoff). Let (E, E ,Γ) be σ-finite,. Let θ be a measure preserving
map. Given f ∈ L1, let ∣∣∣∣ S0(f) = 0

Sn(f) =
∑n−1

k=0 f ◦ θk,
then ∃f ∈ L1 θ-invariant such that

Sn(f)

n
−−−→
n→∞

f Γ a.e.

Lemma 12.5 (Ergodic Lemma). Under the assumptions of Birkhoff’s theorem, let
S∗(f) = supn≥0 Sn(f), then ∫

S∗(f)>0
fdΓ ≥ 0.

Theorem 12.6 (Von Neumann’s). Assume Γ(E) < +∞. Pick 1 ≤ p < +∞,
θ-meaure preserving and f ∈ Lp. Then

Sn(f)

n

Lp−−−→
n→∞

f

for some f ∈ Lp θ-invariant.

12.2. Application to iid. Consider the infinite product space

E = RN = {(xn)n≥1, xn ∈ R}
equipped with the cylindrical σ-algebra σ(C) generated by cylinders

C = {A = Π+∞
n=1An, An ∈ B, An = R for some n ≥ N}.

Given (Xn)n≥1 real valued independent r.v on (Ω,F ,P) with law m, the map

X : Ω→ E, X(w) = (X1(w), X2(w), . . . )

is measurable and the image measure Γ = PX is the unique measure σ(C) satisfying
Γ(Π+∞

n=1An) = Π+∞
n=1m(An).

Definition 12.7. The product space (E = RN, σ(C),Γ) is called the canonical model
associated to the sequence of iid X(n)n≥0.

Lemma 12.8. The shit map

θ : E → E, θ(x1, x2, . . . ) = (x2, x3, . . . )

is Γ-measure preserving and ergodic.

By applying Von Neuman to

f : E → R, f(x) = x1,

we obtain the L1 version of the strong law of large numbers.

Theorem 12.9 (Strong Law of Large Numbers, L1 version). Let (Xn)n≥1 be real
valued independent r.v with same law and E[|X1|] < +∞, then

E
[∣∣∣∣X1 + · · ·+Xn

n
− E[X1]

∣∣∣∣] −−−→n→∞
0.

Department of Pure Mathematics and Mathematical Statistics, Cambridge, UK
E-mail address: pr463@cam.ac.uk


