

PROBABILITY AND MEASURE

PIERRE RAPHAËL

1. σ -algebra and the monotone class Lemma

Definition 1.1 (σ -algebra). *Let E be a set. A σ -algebra (or tribe) on E is a family $\mathcal{A} \subset \mathcal{P}(E)$ such that*

- (i) $E \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \Rightarrow A^c = E \setminus A \in \mathcal{A}$
- (iii) $A_n \in \mathcal{A} \Rightarrow \bigcup_{n \geq 0} A_n \in \mathcal{A}$

Definition 1.2 (Generating set). *Let $\mathcal{C} \subset \mathcal{P}(E)$, we let $\sigma(\mathcal{C})$ be the smallest σ -algebra containing \mathcal{C} .*

Definition 1.3 (Borel σ -algebra). *If E is a topological space, we let $\mathcal{B}(E)$ be the σ -algebra generated by the open sets of E .*

Definition 1.4 (Product σ -algebra). *Given (E_1, \mathcal{A}_1) , (E_2, \mathcal{A}_2) , we let*

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(\{A_1 \times A_2, A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}).$$

Proposition 1.5. *If E_1, E_2 are separable metric spaces, then $\mathcal{B}(E_1) \otimes \mathcal{B}(E_2) = \mathcal{B}(E_1 \times E_2)$.*

Definition 1.6 (Monotone class). *A family $\mathcal{M} \subset \mathcal{P}(E)$ is a monotone class if:*

- (i) $E \in \mathcal{M}$
- (ii) $A, B \in \mathcal{M}$ and $A \subset B$ imply $B \setminus A \in \mathcal{M}$.
- (iii) $A_n \in \mathcal{M}$ increasing family implies $\bigcup_{n \geq 0} A_n \in \mathcal{M}$.

Definition 1.7. *Let $\mathcal{C} \subset \mathcal{P}(E)$, we let $\mathcal{M}(\mathcal{C})$ be the smallest monotone class containing \mathcal{C} .*

Lemma 1.8. *A monotone class is a σ -algebra iff it is stable by finite intersection.*

Proposition 1.9 (Monotone class Lemma). *Let $\mathcal{C} \subset \mathcal{P}(E)$ stable by finite intersection, then $\mathcal{M}(\mathcal{C}) = \sigma(\mathcal{C})$.*

2. Measure

Definition 2.1 (Measure). *A (positive) measure on (E, \mathcal{A}) is a map $\mu : \mathcal{A} \rightarrow [0, \infty]$ with:*

- (i) $\mu(\emptyset) = 0$
- (ii) $A_n \in \mathcal{A}$ two by two disjoint then $\mu(\bigcup_{n \geq 0} A_n) = \sum_{n \geq 0} \mu(A_n)$.

Proposition 2.2. *Let (E, \mathcal{A}, μ) be a measure space.*

- (i) *Let A_n be an increasing family $A_n \subset A_{n+1}$ then $\mu(\bigcup_{n \geq 0} A_n) = \lim_{n \rightarrow \infty} \mu(A_n)$.*
- (ii) *Let B_n be a decreasing family $B_{n+1} \subset B_n$ with $\mu(B_0) < +\infty$ then $\mu(\bigcap_{n \geq 0} B_n) = \lim_{n \rightarrow \infty} \mu(B_n)$.*

Definition 2.3 (Probability measure). *We say μ is finite if $\mu(E) < +\infty$. If $\mu(E) = 1$, we call μ a probability.*

Definition 2.4 (σ -finite). We say μ is σ -finite if there exists an increasing sequence E_n with $\cup_{n \geq 0} E_n = E$ and $\forall n, \mu(E_n) < +\infty$.

Definition 2.5 (Negligible set). A set $N \subset E$ is negligible if there exists $A \in \mathcal{A}$ with $\mu(A) = 0$ such that $N \subset A$. A property is said to hold a.e if the set of points $x \in E$ where it does not hold is negligible.

Definition 2.6 (Completeness). We say μ is complete if \mathcal{A} contains all the negligible sets.

Proposition 2.7 (Uniqueness of measures). Let μ, ν be two measures on (E, \mathcal{A}) .

Assume:

- (i) $\mathcal{A} = \sigma(\mathcal{C})$ with \mathcal{C} stable by finite intersection;
- (ii) $\forall A \in \mathcal{C}, \mu(A) = \nu(A)$;

then we can conclude that $\mu = \nu$ on the full σ -algebra \mathcal{A} whenever one of the following two conditions holds:

- (i) $\mu(E) = \nu(E) < +\infty$
- (ii) \exists an increasing sequence $E_n \subset \mathcal{C}$ with $E = \cup_{n \geq 0} E_n$ and $\forall n, \mu(E_n) < +\infty$.

3. Measurable functions

Definition 3.1 (Measurable spaces). Let $(E, \mathcal{A}), (F, \mathcal{B})$ be two measurable spaces. A map $f : E \rightarrow F$ is measurable if $\forall B \in \mathcal{B}, f^{-1}(B) \in \mathcal{A}$.

Proposition 3.2. The composition of two measurable functions is measurable.

Proposition 3.3. Assume $\mathcal{B} = \sigma(\mathcal{C})$, then f is measurable iff $\forall B \in \mathcal{C}, f^{-1}(B) \in \mathcal{A}$.

Proposition 3.4. A continuous function $f : (E, \mathcal{B}(E)) \rightarrow (F, \mathcal{B}(F))$ is measurable.

Lemma 3.5. Let $f_1 : (E, \mathcal{A}) \mapsto (F_1, \mathcal{B}_1)$ and $f_2 : (E, \mathcal{A}) \mapsto (F_2, \mathcal{B}_2)$. Then $f : (E, \mathcal{A}) \mapsto (F_1 \times F_2, \mathcal{B}_1 \otimes \mathcal{B}_2)$ defined by $f(x) = (f_1(x), f_2(x))$ is measurable iff each component f_1, f_2 is measurable.

Lemma 3.6. Let $f, g : (E, \mathcal{A}) \rightarrow (\mathcal{R}, \mathcal{B}(\mathcal{R}))$ be two measurable functions, then the following functions are measurable:

- (i) any linear combination of (f, g) ;
- (ii) fg ;
- (iii) $f^+ = \max(f, 0), f^- = \max(-f, 0)$.

Definition 3.7 (\limsup , \liminf). We let

$$\limsup_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \downarrow \left(\sup_{k \geq n} a_k \right) = \inf_{n \geq 0} \left(\sup_{k \geq n} a_k \right)$$

and

$$\liminf_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} \uparrow \left(\inf_{k \geq n} a_k \right) = \sup_{n \geq 0} \left(\inf_{k \geq n} a_k \right).$$

Proposition 3.8. Let f_n be a sequence of measurable functions from (E, \mathcal{A}) to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then:

- (i) the functions

$$\sup_{n \geq 0} f_n, \inf_{n \geq 0} f_n, \limsup_{n \rightarrow \infty} f_n, \liminf_{n \rightarrow \infty} f_n$$

are also measurable. In particular, $(f_n \rightarrow f$ pointwise $\Rightarrow f$ measurable);

- (ii) the set $\{x \in E; f_n(x) \text{ has a limit as } n \rightarrow \infty\}$ is measurable.

Definition 3.9 (Measure transported by an application). *Let $f : (E, \mathcal{A}) \rightarrow (F, \mathcal{B})$ be a measurable function and μ a measure on (E, \mathcal{A}) . The image measure of μ by f , noted $f_*(\mu)$ (sometimes $f(\mu)$) is the measure defined by*

$$\forall B \in \mathcal{B}, \quad f_*\mu(B) = \mu(f^{-1}(B)).$$

4. Integration

4.1. Integration of positive functions.

Definition 4.1 (Simple function). *Let (E, \mathcal{A}, μ) measure space. A function $f : (E, \mathcal{A}) \rightarrow \mathbb{R}$ is called simple if*

$$f = \sum_{j=1}^N \alpha_j \mathbf{1}_{A_j}, \quad A_j \in \mathcal{A} \quad \text{and} \quad \bigsqcup_{j=1}^N A_j = E$$

for some $\alpha_j \in \mathbb{R}$. If the values α_j are distinct, this is the canonical representation of f .

Definition 4.2 (Integral of simple functions). *Let f simple valued in \mathbb{R}_+ , we define*

$$\int f d\mu = \sum_{j=1}^n \alpha_j \mu(A_j)$$

with the convention: $(\alpha_j = 0, \mu(A_j) = +\infty) \Rightarrow \alpha_j \mu(A_j) = 0$. This number does not depend on the representation of f . We let \mathcal{E}_+ be the set of positive (≥ 0) simple functions.

Definition 4.3 (Integral of a positive function). *Let (E, \mathcal{A}, μ) measure space and $f : (E, \mathcal{A}) \rightarrow \overline{\mathbb{R}}_+$ a positive measurable function. We define*

$$\int f d\mu = \sup_{h \in \mathcal{E}_+, h \leq f} \int h d\mu.$$

Lemma 4.4 (Basic properties). *There holds:*

- (i) $f \geq g \Rightarrow \int f d\mu \geq \int g d\mu$.
- (ii) $\mu(\{x \in E, f(x) > 0\}) = 0 \Rightarrow \int f d\mu = 0$.

Theorem 4.5 (Monotone convergence). *Let (E, \mathcal{A}, μ) measure space and $f_n : (E, \mathcal{A}) \rightarrow \overline{\mathbb{R}}_+$ an increasing sequence of positive (≥ 0) measurable functions. Let $f = \lim_n \uparrow f_n$, then*

$$\int f d\mu = \lim_{n \rightarrow \infty} \uparrow \int f_n d\mu.$$

Proposition 4.6 (Approximation by simple functions). *Let f be measurable positive, then there exists an increasing sequence f_n of positive simple functions such that $\forall x \in E, \lim_{n \rightarrow \infty} f_n(x) = f(x)$.*

Proposition 4.7 (Basic properties). *All functions are assumed to be measurable positive on (E, \mathcal{A}, μ) measure space.*

- (i) $\forall a, b \geq 0, \int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$.
- (ii) $\int \left(\sum_{n \geq 0} f_n \right) d\mu = \sum_{n \geq 0} \int f_n d\mu$.
- (iii) (Markov) $\mu(\{x \in E, f(x) \geq a\}) \leq \frac{1}{a} \int f d\mu$.
- (iv) $\int f d\mu < \infty \Rightarrow f < \infty \text{ a.e.}$
- (v) $\int f d\mu = 0 \Rightarrow f = 0 \text{ a.e.}$
- (vi) $f = g \text{ a.e.} \Rightarrow \int f d\mu = \int g d\mu$.

Theorem 4.8 (Fatou). *Let (E, \mathcal{A}, μ) measure space and f_n measurable positive, then*

$$\int \left(\liminf_{n \rightarrow \infty} f_n \right) d\mu \leq \liminf_{n \rightarrow \infty} \left(\int f_n d\mu \right).$$

4.2. Integration of real valued functions.

Definition 4.9 (Integral of real valued functions). *Let (E, \mathcal{A}, μ) measure space and $f : E \rightarrow \mathbb{R}$. We say that f is integrable if $\int |f| d\mu < +\infty$ and we then define*

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$

where $f^+ = \max\{f, 0\}$, $f^- = \max\{-f, 0\}$. We note $\mathcal{L}^1(E, \mathcal{A}, \mu)$ the space of real valued integrable functions.

Proposition 4.10 (Linearity). *$\mathcal{L}^1(E, \mathcal{A}, \mu)$ is a vector space and $f \rightarrow \int f d\mu$ is a linear form.*

Proposition 4.11 (Basic properties). *Let $f, g \in \mathcal{L}^1(E, \mathcal{A}, \mu)$.*

- (i) $|\int f d\mu| \leq \int |f| d\mu$.
- (ii) $f \leq g \Rightarrow \int f d\mu \leq \int g d\mu$.
- (iii) $f = g$ a.e. $\Rightarrow \int f d\mu = \int g d\mu$.

Theorem 4.12 (Lebesgue's dominated convergence). *Let $f_n \in \mathcal{L}^1(E, \mathcal{A}, \mu)$ such that:*

- (i) $\exists f$ real valued measurable with $\lim_{n \rightarrow \infty} f_n(x) = f(x)$ a.e.;
- (ii) $\exists g : E \rightarrow \mathbb{R}_+ \in \mathcal{L}^1(E, \mathcal{A}, \mu)$ such that $\forall n, |f_n(x)| \leq g(x)$ a.e..

Then $f \in \mathcal{L}^1(E, \mathcal{A}, \mu)$ and

$$\lim_{n \rightarrow \infty} \int |f_n - f| d\mu = 0.$$

4.3. Integral depending on a parameter.

Theorem 4.13 (Continuity below the integral sign). *Let (E, \mathcal{A}, μ) a measure space and (U, d) a metric space. Let $f : U \times E \rightarrow \mathbb{R}$ and $u_0 \in U$. Assume:*

- (i) $\forall u \in U$, the map $x \mapsto f(u, x)$ is measurable;
- (ii) a.e $x \in E$, the map $u \mapsto f(x, u)$ is continuous at u_0 ;
- (iii) $\exists g \in \mathcal{L}_+^1(E, \mathcal{A}, \mu)$ such that $\forall u \in U, |f(u, x)| \leq g(x)$ a.e..

Then the function $F(u) = \int f(u, x) d\mu$ is well defined for all $u \in U$ and continuous at u_0 .

Theorem 4.14 (Derivability below the integral sign). *Let (E, \mathcal{A}, μ) a measure space and $I \subset \mathbb{R}$ an open interval. Let $f : I \times E \rightarrow \mathbb{R}$ and $u_0 \in I$. Assume:*

- (i) $\forall u \in I$, the map $x \mapsto f(u, x)$ is in $\mathcal{L}^1(E, \mathcal{A}, \mu)$;
- (ii) a.e $x \in E$, the map $u \mapsto f(x, u)$ is differentiable at u_0 with derivative noted $\frac{\partial f}{\partial u}(u_0, x)$;
- (iii) $\exists g \in \mathcal{L}_+^1(E, \mathcal{A}, \mu)$ such that $\forall u \in I, |f(u, x) - f(u_0, x)| \leq g(x)|u - u_0|$ a.e..

Then the function $F(u) = \int f(u, x) d\mu$ is differentiable at u_0 with

$$F'(u_0) = \int \frac{\partial f}{\partial u}(u_0, x) d\mu.$$

5. Construction of measures

Proofs in this section are non examinable, but statements are examinable.

5.1. Lebesgue measure.

Definition 5.1 (Outer measure). *Let E be a set. A map $\mu^* : \mathcal{P}(E) \rightarrow [0, \infty]$ is called an outer measure if:*

- (i) $\mu^*(\emptyset) = 0$
- (ii) μ^* is increasing: $A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$.
- (iii) μ^* is σ sub additive: $\forall A_k \subset E, \mu^*(\bigcup_{k \geq 0} A_k) \leq \sum_{k \geq 0} \mu^*(A_k)$.

Definition 5.2 (Measurability). *A set $B \subset E$ is called μ^* -measurable if*

$$\forall A \subset E, \mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^c).$$

We let $\mathcal{M}(\mu^*)$ be the set of μ^* -measurable sets.

Theorem 5.3 (Construction of a measure from an outer measure). *$\mathcal{M}(\mu^*)$ is a σ -algebra in E and the restriction of μ^* to $\mathcal{M}(\mu^*)$ is a complete measure.*

Theorem 5.4 (Lebesgue measure on \mathbb{R}). *We define*

$$\forall A \subset \mathbb{R}, \lambda^*(A) = \inf \left\{ \sum_{i \in \mathbb{N}} (b_i - a_i), A \subset \bigcup_{i \in \mathbb{N}} [a_i, b_i] \right\}.$$

Then:

- (i) λ^* is an outer measure on \mathbb{R} .
- (ii) $\mathcal{B}(\mathbb{R}) \subset \mathcal{M}(\lambda^*)$.
- (iii) $\forall a \leq b, \lambda^*([a, b]) = \lambda^*([a, b]) = b - a$.

The restriction of λ^* to $\mathcal{M}(\lambda^*)$ is called the Lebesgue measure on \mathbb{R} .

Definition 5.5. Let (E, \mathcal{A}, μ) be a measure space, we let $\overline{\mathcal{A}} = \sigma(\mathcal{A} \cup \mathcal{N})$ where \mathcal{N} are the μ -negligible sets of E .

Proposition 5.6. The Lebesgue tribe $\mathcal{M}(\lambda^*)$ is identical to $\overline{\mathcal{B}(\mathbb{R})}$.

Proposition 5.7. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ Borelian. Let $g : \mathbb{R} \rightarrow \mathbb{R}$ such that $g = f$ λ -a.e, then g is measurable for $\overline{\mathcal{B}(\mathbb{R})}$.

5.2. Link to Riemann.

Definition 5.8 ([Riemann integrability]). *Let $I \subset \mathbb{R}$ be an interval and $f : I \rightarrow \mathbb{R}$ bounded. Let*

$$\begin{cases} S_-(f) = \sup \{ \int_I h(x) dx, h \text{ stair, } h \leq f \} \\ S_+(f) = \inf \{ \int_I h(x) dx, h \text{ stair, } h \geq f \}. \end{cases}$$

We say that f is Riemann integrable if

$$S_+(f) = S_-(f)$$

and then the Riemann integral of f is $S(f) = S_{\pm}(f)$.

Proposition 5.9 (Relation to Riemann). *Let $f : I \rightarrow \mathbb{R}$ Riemann integrable, then f is measurable for $\overline{\mathcal{B}(I)}$ and $S(f) = \int_I f d\lambda$.*

5.3. An example of non measurable set.

Proposition 5.10. Let \mathbb{R}/\mathbb{Q} be the set of equivalence class for the relation $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. Let $F = \{x_a, a \in \mathbb{R}/\mathbb{Q}\}$ where $x_a \in [0, 1]$ is a representant of the equivalence class of a . Then F is not Lebesgue measurable.

Remark 5.11. The existence of F requires the axiom of choice because \mathbb{R}/\mathbb{Q} is uncountable, and this is necessary to construct Lebesgue non measurable sets.

5.4. Lebesgue-Stieltjes measures.

Proposition 5.12. *Let (E, d) be a metric space and μ a finite measure on $(E, \mathcal{B}(E))$. Then for all $A \in \mathcal{B}(E)$:*

$$\mu(A) = \inf\{\mu(U), \text{ } U \text{ open }, A \subset U\} = \sup\{\mu(F), \text{ } F \text{ closed }, F \subset A\}$$

Theorem 5.13 (Lebesgue-Stieltjes). *The following hold.*

(i) *Let μ be a finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then its distribution function*

$$\forall x \in \mathbb{R}, \text{ } F_\mu(x) = \mu([-\infty, x])$$

is increasing, bounded, continuous on the right and $\lim_{x \rightarrow -\infty} F_\mu(x) = 0$.

(ii) *Given $F : \mathbb{R} \rightarrow \mathbb{R}$ increasing, bounded, continuous on the right and with $\lim_{x \rightarrow -\infty} F(x) = 0$, then there exists a unique finite Borelian measure μ such that $F_\mu = F$, and then*

$$F(b) - F(a) = \mu([a, b]).$$

6. L^p spaces

Definition 6.1 ($L^p(E, \mathcal{A}, \mu)$, $1 \leq p < \infty$). *Let (E, \mathcal{A}, μ) be a measure space.*

(i) *Given $p \in [1, \infty[$, we define*

$$\mathcal{L}^p(E, \mathcal{A}, \mu) = \{f : E \rightarrow \mathbb{R} \text{ measurable with } \int |f|^p d\mu < +\infty\}$$

(ii) *We define $\|f\|_p = (\int |f|^p d\mu)^{\frac{1}{p}}$.*

(iii) *We let $L^p(E, \mathcal{A}, \mu) = \mathcal{L}^p(E, \mathcal{A}, \mu)/\sim$ for $f \sim g \Leftrightarrow f = g \text{ } \mu\text{-a.e.}$*

Definition 6.2 ($L^\infty(E, \mathcal{A}, \mu)$, $1 \leq p < +\infty$). *Let (E, \mathcal{A}, μ) be a measure space.*

(i) *We define*

$$\mathcal{L}^\infty(E, \mathcal{A}, \mu) = \{f : E \rightarrow \mathbb{R} \text{ measurable, } \exists C \in \mathbb{R}_+, \text{ } |f| \leq C \text{ } \mu\text{-a.e.}\}$$

(ii) *We define $\|f\|_\infty = \inf\{C \in \mathbb{R}_+, \text{ } |f| \leq C \text{ } \mu\text{-a.e.}\}$.*

(iii) *We let $L^\infty(E, \mathcal{A}, \mu) = \mathcal{L}^\infty(E, \mathcal{A}, \mu)/\sim$ for $f \sim g \Leftrightarrow f = g \text{ } \mu\text{-a.e.}$*

Proposition 6.3 (Hölder). *The following hold.*

(i) $\forall 1 \leq p, p' \leq \infty, \int |fg| d\mu \leq \|f\|_p \|g\|_{p'}$ for $\frac{1}{p} + \frac{1}{p'} = 1$.

(ii) $\forall 1 \leq p, p_i \leq \infty, \|\prod_{i=1}^N f_i\|_p \leq \prod_{i=1}^N \|f_i\|_{p_i}$ for $\frac{1}{p} = \sum_{i=1}^N \frac{1}{p_i}$.

(iii) $\forall 1 \leq p_1, p_2 \leq \infty, \|f\|_p \leq \|f\|_{p_1}^\alpha \|f\|_{p_2}^{1-\alpha}$ for $\frac{1}{p} = \frac{\alpha}{p_1} + \frac{1-\alpha}{p_2}$.

Theorem 6.4 (Riesz-Fischer). *For all $1 \leq p \leq +\infty$, $(L^p(E, \mathcal{A}, \mu), \|\cdot\|_p)$ is a Banach space (ie a complete normed vector space). For $p = 2$, $(L^2(E, \mathcal{A}, \mu), \langle \cdot, \cdot \rangle_2)$ is a Hilbert space (ie a complete space equipped with a scalar product) for the scalar product $\langle f, g \rangle_2 = \int_E f g d\mu$.*

Proposition 6.5. *Let $f_n, f \in L^p(E, \mathcal{A}, \mu)$ with $\lim_{n \rightarrow +\infty} \|f_n - f\|_p = 0$. Then there exists a subsequence $\phi(n)$ strictly increasing such that $\lim_{n \rightarrow +\infty} f_{\phi(n)}(x) = f(x)$ for $\mu\text{-a.e } x \in E$.*

Proposition 6.6 (Dense subsets). *The following holds.*

(i) *Let $1 \leq p \leq \infty$, then simple functions are dense in $L^p(E, \mathcal{A}, \mu)$.*

(ii) *Let $1 \leq p < \infty$, then $\mathcal{C}_c^\infty(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda)$ where λ is the Lebesgue measure (and this is obviously false for $p = \infty$).*

7. Product measure and Fubini's theorem

7.1. Product measure and Fubini. We let (E_1, \mathcal{A}_1) , (E_2, \mathcal{A}_2) be two measurable spaces.

Definition 7.1 (Horizontal and vertical slices of sets). *Let $B \subset E_1 \times E_2$.*

- (i) *For $x \in E_1$, the vertical slice is $B_x = \{y \in E_2, (x, y) \in B\}$.*
- (ii) *For $y \in E_2$, the horizontal slice is $B^y = \{x \in E_1, (x, y) \in B\}$.*

Definition 7.2 (Horizontal and vertical slices of functions). *Let $f : E_1 \times E_2 \rightarrow F$.*

- (i) *For $x \in E_1$, we let $f_x = f(x, \cdot) : E_2 \rightarrow F$.*
- (ii) *For $y \in E_2$, we let $f^y = f(\cdot, y) : E_1 \rightarrow F$.*

Theorem 7.3 (Fubini measurability). *The following hold.*

- (i) *Pick $B \in \mathcal{A}_1 \otimes \mathcal{A}_2$, then $\forall x \in E_1$, $B_x \in \mathcal{A}_2$ and $\forall y \in E_2$, $B^y \in \mathcal{A}_1$.*
- (ii) *Let $f(E_1 \times E_2, \mathcal{A}_1 \otimes \mathcal{A}_2) \rightarrow (F, \mathcal{B})$ measurable, then $\forall x \in E_1$, $f_x : (E_2, \mathcal{A}_2) \rightarrow (F, \mathcal{B})$ is measurable, and $\forall y \in E_2$, $f^y : (E_1, \mathcal{A}_1) \rightarrow (F, \mathcal{B})$ is measurable.*

Theorem 7.4 (Construction of the product measure). *Let μ, ν be two σ -finite measures on resp. (E, \mathcal{A}) and (F, \mathcal{B}) .*

- (i) *There exists a unique measure m on $(E \times F, \mathcal{A} \otimes \mathcal{B})$ such that*

$$\forall A \in \mathcal{A}, \forall B \in \mathcal{B}, m(A \times B) = \mu(A)\nu(B)$$

with the usual convention $0 \cdot \infty = 0$. This measure is called the product measure and is σ -finite, we note it $\mu \otimes \nu$.

- (ii) *For all $C \in \mathcal{A} \otimes \mathcal{B}$,*

$$\mu \otimes \nu(C) = \int_E \nu(C_x) \mu(dx) = \int_F \mu(C^y) \nu(dy).$$

Theorem 7.5 (Fubini-Tonnelli). *Let μ, ν be two σ -finite measures on resp. (E, \mathcal{A}) and (F, \mathcal{B}) . Let $f : E \times F \rightarrow [0, \infty]$ a measurable function.*

- (i) *The functions $x \in E \mapsto \int_F f(x, y) \nu(dy)$ and $y \in F \mapsto \int_E f(x, y) \mu(dx)$ are resp. \mathcal{A} -measurable and \mathcal{B} -measurable.*
- (ii) *There holds*

$$\int_{E \times F} f d(\mu \otimes \nu) = \int_E \left[\int_F f(x, y) \nu(dy) \right] \mu(dx) = \int_F \left[\int_E f(x, y) \mu(dx) \right] \nu(dy).$$

Theorem 7.6 (Fubini-Lebesgue). *Let μ, ν be two σ -finite measures on resp. (E, \mathcal{A}) and (F, \mathcal{B}) . Let $f \in \mathcal{L}^1(E \times F, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$.*

- (i) *For μ a.e $x \in E$, $f_x \in \mathcal{L}^1(F, \mathcal{B}, \nu)$ and ν a.e $y \in F$, $f^y \in \mathcal{L}^1(E, \mathcal{A}, \mu)$.*
- (ii) *The function $x \mapsto \int_F f(x, y) \nu(dy)$ is well defined for μ a.e $x \in E$ and belongs to $\mathcal{L}^1(E, \mathcal{A}, \mu)$. The function $y \mapsto \int_E f(x, y) \mu(dx)$ is well defined for ν a.e $y \in F$ and belongs to $\mathcal{L}^1(F, \mathcal{B}, \nu)$.*
- (iii) *There holds*

$$\int_{E \times F} f d(\mu \otimes \nu) = \int_E \left[\int_F f(x, y) \nu(dy) \right] \mu(dx) = \int_F \left[\int_E f(x, y) \mu(dx) \right] \nu(dy).$$

7.2. Applications.

Definition 7.7 (Convolution). *Let $f, g : \mathbb{R}^d \rightarrow \mathbb{R}$ measurable. For $x \in \mathbb{R}^d$, we define the convolution product by*

$$f \star g(x) = \int f(x - y) g(y) dy.$$

Proposition 7.8. *Let $f, g \in L^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda)$, then for λ a.e $x \in \mathbb{R}^d$, the convolution $f \star g(x)$ is well defined. Moreover, $f \star g \in L^1(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda)$ with*

$$\|f \star g\|_{L^1} \leq \|f\|_{L^1} \|g\|_{L^1}.$$

Proposition 7.9 (Young's inequality). *Ler $1 \leq r, p, q \leq +\infty$ with $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, then*

$$\|f \star g\|_{L^r} \leq \|f\|_{L^p} \|g\|_{L^q}.$$

Definition 7.10 (Approximation of identity). *We say a sequence of functions $\phi_n : \mathbb{R}^d \rightarrow \mathbb{R}$ is an approximation of identity if:*

- (i) $\phi_n \geq 0$;
- (ii) *there exists $K \subset \mathbb{R}^d$ compact such that $\text{Supp} \phi_n \subset K$;*
- (iii) $\forall \delta > 0$, $\lim_{n \rightarrow \infty} \int_{|x| < \delta} \phi_n(x) dx = 0$.

Proposition 7.11 (Density of smooth functions in $L^p(\mathbb{R}^d)$). *Let ϕ_n be an approximation of identity. Let $1 \leq p < \infty$. Then for all $f \in L^p(\mathbb{R}^d, \overline{\mathcal{B}(\mathbb{R}^d)}, \lambda)$, $\phi_n \star f \in \mathcal{C}^\infty(\mathbb{R}^d, \mathbb{R})$ and $\lim_{n \rightarrow \infty} \|f_n - f\|_{L^p} = 0$.*

8. Properties of the Lebesgue measure

Theorem 8.1 (Change of variables formula). *Let $\phi : U \rightarrow D$ \mathcal{C}^1 diffeomorphism. Then for all Borelian function $f : D \rightarrow \mathbb{R}_+$ or integrable $f \in \mathcal{L}^1(D, \lambda)$, there holds*

$$\int_D f(x) dx = \int_U f[\phi(u)] |J_\phi(u)| du.$$

Theorem 8.2 (Measure on the sphere). *Let λ_d be the Lebesgue measure λ_d on \mathbb{R}^d . (i) For every Borelian $A \in \mathcal{B}(S^{d-1})$,*

$$w_d(A) = d\lambda_d[\Gamma(A)]$$

where $\Gamma(A) = \{rz; z \in A, r \in [0, 1]\}$, defines a finite measure on S^{d-1} , invariante by the linear isometries of \mathbb{R}^d , and with

$$w_d(S^{d-1}) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}.$$

(ii) For every Borelian positive (or integrable) function f on \mathbb{R}^d , there holds

$$\int_{\mathbb{R}^d} f(x) d\lambda(x) = \int_0^\infty \int_{S^{d-1}} f(rx) r^{d-1} dr dw_d(z).$$

9. Random variables

9.1. **Basic definitions.** We fix once and for all (Ω, \mathcal{A}, P) probability space.

Definition 9.1 (Random variable). *Let (Ω, \mathcal{A}) and (E, \mathcal{E}) . A measurable map $X : (\Omega, \mathcal{A}) \rightarrow (E, \mathcal{E})$ is called a random variable with value in E . If $E = \mathbb{R}$, we speak of real random variable,*

Definition 9.2 (Law). *The law of a random variable X is the probability image of P by X :*

$$\forall B \in \mathcal{E}, \quad P_X(B) = P(X \in B) = P(X^{-1}(B)).$$

Remark 9.3. If E is countable (ie the r.v is discrete), then

$$P_X = \sum_{x \in E} P(X = x) \delta_x$$

where δ_x is for $x \in E$ the measure

$$\forall B \in \mathcal{E}, \quad \delta_x(B) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{otherwise} \end{cases}$$

Definition 9.4 (Density of a r.v). A r.v with value in $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is said to have a law with density p if

$$dP_X = p(x)dx \Leftrightarrow \forall B \in \mathcal{E}, \quad P_X(B) = \int_B p(x)dx.$$

(dx is Lebesgue)

Definition 9.5 (Expectation). Let X be a real r.v. We define its expectation by

$$\mathbb{E}[X] = \int_{\Omega} X(w)P(dw).$$

Proposition 9.6. Let X be a r.v with value in (E, \mathcal{E}) and $f : (E, \mathcal{E}) \rightarrow [0, \infty]$, then

$$\mathbb{E}[f(X)] = \int_E f(x)P_X(dx).$$

Proposition 9.7 (Marginals). Let $X = (X_1, \dots, X_d)$ be a r.v. with value in \mathbb{R}^d . Assume that the law of X has density $p(x_1, \dots, x_d)$, then $\forall j \in \{1, \dots, d\}$, the law of X_j has density

$$p_j(x) = \int_{\mathbb{R}^{d-1}} p(x_1, \dots, x_{j-1}, x, x_{j+1}, \dots, x_d) dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_d.$$

9.2. Classical laws.

Definition 9.8 (Discrete laws). The following are classical examples of discrete laws.

(i) Uniform law. Let E be a set with $\#E = n$, a r.v has uniform law if $\forall x \in E$, $P(X = x) = \frac{1}{n}$.

(ii) Bernoulli. Let $p \in [0, 1]$, this is the law of a r.v X with value in $\{0, 1\}$ such that

$$P(X = 1)p, \quad P(X = 0) = 1 - p.$$

It is interpreted as the result after one throw of a biased coin which falls on head with probability p .

(iii) Binomial $\mathcal{B}(n, p)$, $n \in \mathbb{N}^*$, $p \in [0, 1]$ It is the law of a r.v with values in $\{1, \dots, n\}$ such that

$$P(X = k) = (1 - p)p^k.$$

It is interpreted as the number of heads obtained after n throws of the biased coin.

(iv) Poisson's law of parameter $\lambda > 0$. It is the law of a r.v with value in \mathbb{N} and

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

It corresponds to the number of rare events during a long period. Mathematically, if X_n follows the law $\mathcal{B}(n, p_n)$ and $np_n \rightarrow \lambda$ as $n \rightarrow +\infty$, then

$$\lim_{n \rightarrow \infty} P(X_n = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Definition 9.9 (Continuous laws). *The following are classical examples of continuous laws. Let X be a r.v with value in \mathbb{R} and density $p(x)$.*

- (i) Uniform law on $[a, b]$, $a < b$: $p(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x)$.
- (ii) Exponential law with parameter $\lambda > 0$: $p(x) = \lambda e^{-\lambda x} \mathbf{1}_{\mathbb{R}_+}(x)$. Exponential laws have the "no memory" property

$$P(X > a + b) = P(X > a)P(X > b).$$

- (iii) Gaussian law $\mathcal{N}(m, \sigma^2)$, $m \in \mathbb{R}$, $\sigma > 0$:

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(x-m)^2}{2\sigma^2}\right).$$

The parameters m, σ are interpreted as

$$m = \mathbb{E}[X], \quad \sigma^2 = \mathbb{E}[(X - m)^2].$$

By convention, we say that a r.v. constant equal to m follows the Gaussian law $\mathcal{N}(m, 0)$. If X follows $\mathcal{N}(m, \sigma^2)$,

$$\forall \lambda, \mu \in \mathbb{R}, \quad \lambda X + \mu \text{ follows } \mathcal{N}(\lambda m + \mu, \lambda^2 \sigma^2).$$

9.3. Structural definitions.

Definition 9.10 (Distribution function). *Let X be a real r.v, its distribution function is $F_X : \mathbb{R} \rightarrow [0, 1]$ given by*

$$F_X(t) = P(X \leq t) = P_X(]-\infty, t]), \quad \forall t \in \mathbb{R}.$$

It is increasing, continuous on the right with $\lim_{t \rightarrow -\infty} F_X(t) = 0$, $\lim_{t \rightarrow +\infty} F_X(t) = 1$. Moreover,

$$\left| \begin{array}{ll} P(a \leq X \leq b) = F_X(b) - F_X(a^-) & \text{for } a \leq b \\ P(a < X < b) = F_X(b^-) - F_X(a) & \text{for } a < b. \end{array} \right.$$

Definition 9.11. *Let X be a r.v valued in (E, \mathcal{E}) , the σ -algebra generated by X is*

$$\sigma(X) = \{X^{-1}(B), \quad B \in \mathcal{E}\}.$$

If $(X_i)_{i \in I}$ is a family of r.v valued in (E_i, \mathcal{E}_i) , the σ -algebra generated by the family is the smallest σ -algebra which makes all X_i measurable ie

$$\sigma[(X_i)_{i \in I}] = \sigma(\{X_i^{-1}(B_i), B_i \in \mathcal{E}_i\}).$$

Proposition 9.12. *Let X r.v valued in (E, \mathcal{E}) and Y real r.v. TFAE:*

- (i) Y is $\sigma(X)$ measurable;
- (ii) there exists $f : (E, \mathcal{E}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ measurable such that $Y = f(X)$.

9.4. Moments and variance.

Remark 9.13. Theorems of integration in probabilistic language:

- (i) Monotone convergence: $X_n \geq 0, X_n \uparrow X \Rightarrow \mathbb{E}(X_n) \uparrow \mathbb{E}(X)$.
- (ii) Fatou: $X_n \geq 0 \Rightarrow \mathbb{E}[\liminf X_n] \leq \liminf \mathbb{E}[X_n]$.
- (iii) Lebesgue: $|X_n| \leq Z, \mathbb{E}[Z] < +\infty, X_n \rightarrow X$ a.e $\Rightarrow \mathbb{E}[X_n] \rightarrow \mathbb{E}[X]$.
- (iv) Hölder: $\mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|X|^{p'}])^{\frac{1}{p'}}$ for $\frac{1}{p} + \frac{1}{p'} = 1, 1 \leq p, p' \leq +\infty$.
- (v) L^p embeddings: $\|X\|_r \leq \|X\|_p$ for $1 \leq r \leq p \leq +\infty$.

Definition 9.14 (variance). *Let $X \in L^2(\Omega, \mathcal{A}, P)$. The variance is*

$$\text{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

and the standard deviation is

$$\sigma_X = \sqrt{\text{var}(X)}.$$

Lemma 9.15. $\text{var}(X) = \inf_{a \in \mathbb{R}} \mathbb{E}[(X - a)^2]$.

Remark 9.16. Classical inequalities in probabilistic language:

- (i) Markov: $P(X \geq a) \leq \frac{\mathbb{E}[X]}{a}$.
- (ii) Bienayme-Tchebicheff: if $X \in L^2(\Omega, \mathcal{A}, P)$, $P(|X - \mathbb{E}(X)| \geq a) \leq \frac{\text{var}(X)}{a^2}$.

Definition 9.17 (covariance). *Let $X, Y \in L^2(\Omega, \mathcal{A}, P)$, their covariance is*

$$\text{cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \mathbb{E}[(Y - \mathbb{E}[Y])]] = [XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

If $X = (X_1, \dots, X_d)$ has coordinates in $X_i \in L^2(\Omega, \mathcal{A}, P)$, then the matrix covariance is

$$K_X = (\text{cov}(X_i, X_j))_{1 \leq i, j \leq n}.$$

Proposition 9.18 (Linear regression). *Let (X, Y_1, \dots, Y_n) be real r.v in $L^2(\Omega, \mathcal{A}, P)$.*

Then

$$\inf_{\beta_0, \dots, \beta_n \in \mathbb{R}} \mathbb{E}[(X - (\beta_0 + \beta_1 Y_1 + \dots + \beta_n Y_n))^2] = \mathbb{E}[(X - Z)^2]$$

where

$$Z = \mathbb{E}[X] + \sum_{j=1}^n \alpha_j (Y_j - \mathbb{E}[Y_j])$$

and $(\alpha_j)_{1 \leq j \leq n}$ is any solution to the system

$$\sum_{j=1}^n \alpha_j \text{cov}(Y_j, Y_k) = \text{cov}(X, Y_k), \quad 1 \leq k \leq n.$$

9.5. Characteristic function.

Definition 9.19. *Let $f \in L^1(\mathbb{R}^d)$, we let $\hat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix \cdot \xi} f(x) dx$.*

Lemma 9.20 (Inverse Fourier transform). *Let $f \in \mathcal{C}_c^\infty(\mathbb{R}^d)$, then*

$$f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \xi} \hat{f}(\xi) d\xi.$$

Lemma 9.21 (Plancherel). *Let $f, g \in \mathcal{C}_c^\infty(\mathbb{R}^d)$, then*

$$\int_{\mathbb{R}^d} f(x) \overline{g(x)} dx = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\xi) \overline{\hat{g}(\xi)} d\xi.$$

This allows us to uniquely extend the Fourier as a continuous isomorphism of L^2 .

Definition 9.22 (Characteristic function). *Let X be a r.v valued in \mathbb{R}^d , its characteristic function is the function $\Phi_X : \mathbb{R}^d \rightarrow \mathbb{C}$ defined by*

$$\Phi_X(\xi) = \mathbb{E} \left[e^{ix \cdot \xi} \right] = \int_{\mathbb{R}^d} e^{ix \cdot \xi} P_X(dx).$$

Lemma 9.23 (Characteristic function of one dimensional Gaussian). *Let X be a real r.v with law $\mathcal{N}(0, \sigma^2)$, then*

$$\Phi_X(\xi) = e^{-\frac{\sigma^2 \xi^2}{2}}.$$

Theorem 9.24. *The characteristic function of a r.v valued in \mathbb{R}^d characterizes the law of this r.v. Equivalently, the Fourier transform defined on the space of probability measure on \mathbb{R}^d is injective.*

The proof relies on the following (density related) statement.

Proposition 9.25. *Let μ, ν be two probability measures on \mathbb{R}^d . Assume that for all test function $\phi \in \mathcal{C}_b(\mathbb{R}^d)$ (ie continuous bounded and real valued),*

$$\int_{\mathbb{R}^d} \phi d\mu = \int_{\mathbb{R}^d} \phi d\nu$$

then $\mu = \nu$.

Proposition 9.26. *Let $X = (X_1, \dots, X_n)$ r.v valued in \mathbb{R}^d and square integrable. Then Φ_X is \mathcal{C}^2 and*

$$\Phi_X(\xi) = 1 + i \sum_{j=1}^n \xi_j \mathbb{E}[X_j] - \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \xi_j \xi_k \mathbb{E}[X_j X_k] + o(|\xi|^2).$$

Definition 9.27 (Generating function). *Let X r.v valued in \mathbb{N} . The generating function of X is the function $g_X : [0, 1] \rightarrow \mathbb{R}_+$ given by*

$$g_X(r) = \mathbb{E}[r^X] = \sum_{n \geq 0} P(X = n) r^n.$$

10. Independance

10.1. Definitions.

Definition 10.1 (Independance of events). *We say n events A_1, \dots, A_n are independent iff for all $\{j_1, \dots, j_p\} \subset \{1, \dots, n\}$,*

$$P(A_{j_1} \cap \dots \cap A_{j_p}) = P(A_{j_1}) \dots P(A_{j_p}).$$

Lemma 10.2. *The n events A_1, \dots, A_n are independent iff*

$$P(B_1 \cap \dots \cap B_n) = P(B_1) \dots P(B_n)$$

whenever $B_i \in \sigma(A_i) \equiv \{\emptyset, A_i, A_i^c, \Omega\}$, $\forall i \in \{1, \dots, n\}$.

Definition 10.3 (Independance of tribes). *Let $\mathcal{B}_1, \dots, \mathcal{B}_n$ be sub σ -algebra of \mathcal{A} . We say they are independent iff*

$$\forall A_1 \in \mathcal{B}_1, \dots, A_n \in \mathcal{B}_n, \quad P(A_1 \cap \dots \cap A_n) = P(A_1) \dots P(A_n).$$

Definition 10.4 (Independance of re.v). *Let X_1, \dots, X_n be r.v with values in $(E_1, \mathcal{E}_1), \dots, (E_n, \mathcal{E}_n)$. We say they are independent iff*

$$\forall F_1 \in \mathcal{E}_1, \dots, F_n \in \mathcal{E}_n, \quad P(\{X_1 \in F_1\} \cap \dots \cap \{X_n \in F_n\}) = P(X_1 \in F_1) \dots P(X_n \in F_n).$$

Remark 10.5. (i) Let $\mathcal{B}_1, \dots, \mathcal{B}_n$ family of independent sub σ -algebra, then if X_i \mathcal{B}_i -measurable r.v, then (X_1, \dots, X_n) are independent.

(ii) Events A_1, \dots, A_n are independent iff the sub σ -algebra $(\sigma(A_1), \dots, \sigma(A_n))$ are.

Definition 10.6. Let $(\mathcal{B}_i)_{i \in I}$ an arbitrary family of sub σ -algebra, we say that the family is independent iff $\forall \{i_1, \dots, i_p\}$, $(\mathcal{B}_1, \dots, \mathcal{B}_{i_p})$ are independent. We say a an arbitrary family $(X_i)_{i \in I}$ of r.v is independent iff $(\sigma(X_i))_{i \in I}$ is.

Corollary 10.7. Let $(X_n)_{n \in \mathbb{N}}$ a family of independent r.v, then $\forall p \geq 1$,

$$\mathcal{B}_1 = \sigma(X_1, \dots, X_p), \quad \mathcal{B}_2 = \sigma(X_{p+1}, X_{p+2}, \dots)$$

are independent.

10.2. Characterization of independance.

Theorem 10.8 (Characterization with law). The r.v (X_1, \dots, X_n) are independent iff the law of $X = (X_1, \dots, X_n)$ is the product of the law of the X_i 's:

$$P_X = P_{X_1} \otimes \dots \otimes P_{X_n}.$$

In this case, for all $f_i \geq 0$ measurable on (E_i, \mathcal{E}_i) , $1 \leq i \leq n$:

$$\mathbb{E} \left[\prod_{i=1}^n f_i(X_i) \right] = \prod_{i=1}^n \mathbb{E} [f_i(X_i)].$$

Corollary 10.9. Let X_1, X_2 be two L^2 integrable r.v, then $\text{cov}(X_1, X_2) = 0$.

Theorem 10.10 (Characterization with densities). Let (X_1, \dots, X_n) real r.v.

(i) Assume that $\forall i \in \{1, \dots, n\}$, the law of X_i has density p_i , and (X_1, \dots, X_n) are independant. Then the law of $X = (X_1, \dots, X_n)$ is

$$p(x_1, \dots, x_n) = \prod_{i=1}^n p_i(x_i).$$

(ii) Conversely, assume that the law of $X = (X_1, \dots, X_n)$ has a density of the form

$$p(x_1, \dots, x_n) = \prod_{i=1}^n q_i(x_i)$$

for some Borelian positive functions q_i . Then (X_1, \dots, X_n) are independant and $\forall i \in \{1, \dots, n\}$, the law of X_i has density $p_i = C_i p_i$ for some constant $C_i > 0$.

Remark 10.11. Let (X_1, \dots, X_n) real r.v, then TFAE:

(i) (X_1, \dots, X_n) are independent.

(ii) $\forall a_1, \dots, a_n \in \mathbb{R}$, $P(X_1 \leq a_1, \dots, X_n \leq a_n) = \prod_{i=1}^n P(X_i \leq a_i)$.

(iii) For all f_1, \dots, f_n continuous bounded from \mathbb{R} to \mathbb{R}_+ , $\mathbb{E} \left[\prod_{i=1}^n f_i(X_i) \right] = \prod_{i=1}^n \mathbb{E} [f_i(X_i)]$.

(iv) The characteristic function of $X = (X_1, \dots, X_n)$ is $\Phi_X(\xi_1, \dots, \xi_n) = \prod_{i=1}^n \Phi_{X_i}(\xi_i)$.

Proposition 10.12. Let $\mathcal{B}_1, \dots, \mathcal{B}_n$ be sub σ -algebra of \mathcal{A} . Assume:

(i) $\forall i \in \{1, \dots, n\}$, there exists $\mathcal{C}_i \subset \mathcal{B}_i$ monotone class stable by finite intersection with $\sigma(\mathcal{C}_i) = \mathcal{B}_i$;

(ii) $\forall C_1 \in \mathcal{C}_1, \dots, C_n \in \mathcal{C}_n$, $P(C_1 \cap \dots \cap C_n) = P(C_1) \dots P(C_n)$.

Then $\mathcal{B}_1, \dots, \mathcal{B}_n$ are independent.

Corollary 10.13 (Regrouping). Let $\mathcal{B}_1, \dots, \mathcal{B}_n$ independent sub σ -algebra. Then for all $0 < n_1 < \dots < n_p = n$, the sub σ -algebra

$$\left| \begin{array}{l} \mathcal{D}_1 = \mathcal{B}_1 \vee \dots \vee \mathcal{B}_{n_1} \equiv \sigma(\mathcal{B}_1 \vee \dots \vee \mathcal{B}_{n_1}) \\ \mathcal{D}_2 = \mathcal{B}_{n_1+1} \vee \dots \vee \mathcal{B}_{n_2} \\ \dots \\ \mathcal{D}_p = \mathcal{B}_{n_{p-1}+1} \vee \dots \vee \mathcal{B}_{n_p} \end{array} \right.$$

are independent.

Corollary 10.14. *If (X_1, \dots, X_n) are independent, then the r.v*

$$Y_1 = (X_1, \dots, X_{n_1}), \dots, Y_p = (X_{n_{p-1}+1}, \dots, X_{n_p})$$

are also independent.

Definition 10.15 (Independance for an infinite family). (i) *Let $(\mathcal{B}_i)_{i \in I}$ be an arbitrary sub family of tribes of \mathcal{A} . We say that this family is independent if for all $\{i_1, \dots, i_p\}$, $(\mathcal{B}_{i_1}, \dots, \mathcal{B}_{i_p})$ is an independent family.*

(ii) *We say an arbitrary family $(X_i)_{i \in I}$ is independent of the family of tribes $(\sigma(X_i))_{i \in I}$ is.*

Proposition 10.16. *Let $(X_n)_{n \geq 1}$ be a family of independent r.v. Then for all integer $p \in \mathbb{N}$, the tribes $\mathcal{B}_1 = \sigma(X_0, \dots, X_p)$ and $\mathcal{B}_2 = \sigma(X_{p+1}, X_{p+2}, \dots)$ are independent.*

10.3. Borel Cantelli.

Lemma 10.17 (Borel Cantelli). *Let $(A_n)_{n \in \mathbb{N}}$ a family of events, and define*

$$\begin{cases} \limsup A_n = \bigcap_{n=0}^{\infty} (\bigcup_{k=n}^{\infty} A_k) \\ \liminf A_n = \bigcup_{n=0}^{\infty} (\bigcap_{k=n}^{\infty} A_k) \end{cases}$$

(i) *If $\sum_{n \in \mathbb{N}} P(A_n) < +\infty$, then $P(\limsup A_n) = 0$. Equivalently,*

$$\text{a.s, } \{n \in \mathbb{N}, w \in A_n\} \text{ is finite.}$$

(ii) *If $\sum_{n \in \mathbb{N}} P(A_n) = +\infty$ and the events A_n are independent, then $P(\limsup A_n) = 1$. Equivalently,*

$$\text{a.s, } \{n \in \mathbb{N}, w \in A_n\} \text{ is infinite.}$$

10.4. Sum of independent random variables.

Definition 10.18 (Convolution of measures). *Let μ, ν be two probability measures on \mathbb{R}^d , then $\mu \star \nu$ is the image of $\mu \otimes \nu$ by the map $(x, y) \rightarrow x + y$. Equivalently, for any positive measurable ϕ :*

$$\int_{\mathbb{R}^d} \phi(z) \mu \star \nu(dz) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \phi(x + y) \nu(dx) \nu(dy).$$

Proposition 10.19. *Let X, Y be two independent r.v with value in \mathbb{R}^d .*

- (i) *The law of $X + Y$ is $P_X \star P_Y$. In particular, if P_X has density p_X and P_Y has density p_Y , then P_{X+Y} has density $p_X \star p_Y$.*
- (ii) *The characteristic function of $X + Y$ is $\Phi_{X+Y}(\xi) = \Phi_X(\xi) \Phi_Y(\xi)$. (Equivalently, if μ, ν are two probability measures on \mathbb{R}^d , then $\widehat{\mu \star \nu} = \widehat{\mu} \widehat{\nu}$).*
- (iii) *If X, Y are square integrable, then $K_{X+Y} = K_X + K_Y$. In particular, for $d = 1$, $\text{var}(X + Y) = \text{var}(X) + \text{var}(Y)$.*

Theorem 10.20 (Weak law of large numbers). *Let $(X_n)_{n \geq 1}$ be a family of real valued independent r.v with same law. If $E(X_1^2) < +\infty$, then*

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \rightarrow \infty]{L^2} \mathbb{E}[X_1].$$

Proposition 10.21. *Let $(X_n)_{n \geq 1}$ be a family of real valued independent r.v with same law. If $\mathbb{E}(X_1^4) < +\infty$, then*

$$\text{a.s } \frac{X_1 + \dots + X_n}{n} \rightarrow \mathbb{E}[X_1].$$

Definition 10.22 (Convolution semi group). *A family of probability measures $(\mu_t)_{t \in I}$ is said to be a convolution semi group if*

$$\left| \begin{array}{l} \mu_0 = \delta_0 \\ \mu_t \star \mu_{t'} = \mu_{t+t'}, \quad \forall t, t' \in I \end{array} \right.$$

Lemma 10.23. *For $(\mu_t)_{t \in I}$ to be a convolution semi group, it is enough that:*

- (i) *if $I = \mathbb{N}$, $\hat{\mu}_t(\xi) = [\phi(\xi)]^t$, $\forall t \in I$.*
- (ii) *if $I = \mathbb{R}$, $\hat{\mu}_t(\xi) = e^{-t\phi(\xi)}$, $\forall t \in I$.*

Examples.

- (i) For $I = \mathbb{N}$ and $n > 0$, let μ_n be the binomial law $B(n, p)$ (where $p \in [0, 1]$ has been fixed), then $\mu_{n+m} = \mu_n \star \mu_m$ can be seen by computing $\hat{\mu}_n(\xi) = (pe^{i\xi} + 1 - p)^n$.
- (ii) For $I = \mathbb{R}_+$, $t \in \mathbb{R}_+$, let μ_t be the Poisson law of parameter t , then

$$\hat{\mu}_t(\xi) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} e^{ik\xi} e^{-t} = e^{-t(1-e^{i\xi})},$$

- (iii) For $I = \mathbb{R}_+$, $t > 0$, let μ_t be the Gaussian law $\mathcal{N}(0, t)$, then

$$\hat{\mu}_t(\xi) = e^{-\frac{t\xi^2}{2}}.$$

Important consequences. Let X, Y be two independent real r.v.

- (i) If X follows Poisson of parameter λ and Y follows Poisson of parameter λ' , then $X + Y$ follows Poisson of parameter $\lambda + \lambda'$.
- (ii) If X follows the Gaussian law $\mathcal{N}(m, \sigma^2)$ and X' follows the Gaussian law $\mathcal{N}(m', (\sigma')^2)$, then $X + X'$ follows the Gaussian law $\mathcal{N}(m + m', \sigma^2 + (\sigma')^2)$.

11. Convergence of random variables

11.1. **Convergence in probability.** We have already introduced

$$X_n \xrightarrow[n \rightarrow \infty]{a.s.} X \Leftrightarrow P\left(\{x \in \Omega : \lim_{n \rightarrow \infty} X_n(w) = X(x)\}\right) = 1$$

and for $1 \leq p < +\infty$

$$X_n \xrightarrow[n \rightarrow \infty]{L^p} X \Leftrightarrow \lim_{n \rightarrow \infty} \mathbb{E}[|X - X_n|^p] = 0.$$

Definition 11.1 (Convergence in probability). *We say X_n converges to X in probability*

$$X_n \xrightarrow[n \rightarrow \infty]{(P)} X$$

if

$$\forall \varepsilon > 0, \quad \lim_{n \rightarrow \infty} P(|X_n - X| > \varepsilon) = 0.$$

Proposition 11.2 (Completeness). *Let $\mathcal{L}_{\mathbb{R}^d}^0(\Omega, \mathcal{A}, P)$ be the quotient of the space of all r.v with value in \mathbb{R}^d quotiented by the equivalence relation $X \sim Y \Leftrightarrow X = Y$ a.s.. Then:*

- (i) $d(X, Y) = \mathbb{E}[|X - Y| \wedge 1]$ defines a distance on $\mathcal{L}_{\mathbb{R}^d}^0(\Omega, \mathcal{A}, P)$, and this metric space is complete.
- (ii) $\lim_{n \rightarrow \infty} d(X_n, X) = 0 \Leftrightarrow X_n \xrightarrow[n \rightarrow \infty]{(P)} X$.

Lemma 11.3. *If X_n converges a.s to X (or in L^p), then it also converges in probability. Conversely, if X_n converges in probability to X , then there exists a subsequence X_{n_k} which converges a.s to X .*

11.2. Strong law of large numbers.

Theorem 11.4 (Kolmogorov's 0-1 law). *Let $(X_n)_{n \geq 1}$ be a sequence of independent r.v. Let for $n \geq 1$*

$$\mathcal{B}_n = \sigma(X_k, k \geq n),$$

then the asymptotic tribe

$$\mathcal{B}_\infty = \cap_{n \geq 1} \mathcal{B}_n$$

is rough in the sense that

$$\forall B \in \mathcal{B}_\infty, \quad P(B) \in \{0, 1\}.$$

Theorem 11.5 (Strong law of large numbers, a.e version). *Let $(X_n)_{n \geq 1}$ be a sequence of real independent r.v. with same law and $\mathbb{E}[|X_1|] < +\infty$, then*

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \rightarrow \infty]{a.s.} \mathbb{E}[X_1].$$

11.3. Convergence in law.

Definition 11.6 (Test function). (i) *We let $\mathcal{C}_b(\mathbb{R}^d)$ be the space of continuous bounded functions from $\mathbb{R}^d \rightarrow \mathbb{R}$ equipped with the sup norm*

$$\|\phi\|_{L^\infty} = \sup_{x \in \mathbb{R}^d} |\phi(x)|.$$

(ii) *We let $\mathcal{C}_c(\mathbb{R}^d)$ the subset of $\mathcal{C}_b(\mathbb{R}^d)$ of continuous functions with compact support (where we recall $\text{Supp}(f) = \overline{\{x \in \mathbb{R}^d, f(x) \neq 0\}}$.)*

Definition 11.7 (Convergence in law). (i) *We say a sequence $(\mu_n)_{n \geq 1}$ of probability measures over \mathbb{R}^d converges in distribution to a probability measure μ ($\mu_n \xrightarrow[n \rightarrow \infty]{(D)} \mu$) iff*

$$\forall \phi \in \mathcal{C}_b(\mathbb{R}^d), \quad \lim_{n \rightarrow \infty} \int \phi d\mu_n = \int \phi d\mu.$$

(ii) *We say a sequence of r.v. $(X_n)_{n \geq 1}$ with value in \mathbb{R}^d converges in law (or in distribution) to X iff $P_{X_n} \xrightarrow[n \rightarrow \infty]{(D)} P_X$. Equivalently,*

$$\forall \phi \in \mathcal{C}_b(\mathbb{R}^d), \quad \lim_{n \rightarrow \infty} \mathbb{E}[\phi(X_n)] = \mathbb{E}[\phi(X)].$$

Lemma 11.8. *Let (μ_n, μ) be probability measures on \mathbb{R}^d . TFAE:*

- (i) $\mu_n \xrightarrow[n \rightarrow \infty]{(D)} \mu$;
- (ii) $\forall G$ open, $\liminf \mu_n(G) \geq \mu(G)$;
- (iii) $\forall F$ closed, $\limsup \mu_n(F) \leq \mu(F)$;
- (iv) $\forall B$ Borelian with $\mu(\partial B) = 0$, $\lim_{n \rightarrow \infty} \mu_n(B) = \mu(B)$ where $\partial B = \overline{B} \setminus \mathring{B}$.

Proposition 11.9. *A sequence of r.v. $(X_n)_{n \geq 1}$ with value in \mathbb{R}^d converges in law to X iff the distribution functions $F_{X_n}(x)$ converges to $F_X(x)$ at every point x where F_X is continuous.*

Proposition 11.10 (Weakening test functions). *Let $(\mu_n)_{n \geq 1}, \mu$ be probability measures over \mathbb{R}^d . Let H be a subspace of $\mathcal{C}_b(\mathbb{R}^d)$ which closure (for the sup norm) contains $\mathcal{C}_c(\mathbb{R}^d)$. Then TFAE:*

- (i) $\mu_n \xrightarrow[n \rightarrow \infty]{(D)} \mu$.
- (ii) $\forall \phi \in \mathcal{C}_c(\mathbb{R}^d), \lim_{n \rightarrow \infty} \int \phi d\mu_n = \int \phi d\mu$.
- (iii) $\forall \phi \in H, \lim_{n \rightarrow \infty} \int \phi d\mu_n = \int \phi d\mu$.

Theorem 11.11 (Levy). (i) A sequence of probability measures $(\mu_n)_{n \geq 1}$ converges in distribution to a probability measure μ iff

$$\forall \xi \in \mathbb{R}^d, \quad \lim_{n \rightarrow \infty} \widehat{\mu_n}(\xi) = \widehat{\mu}(\xi).$$

(ii) A sequence of r.v. $(X_n)_{n \geq 1}$ with value in \mathbb{R}^d converges in law (or in distribution) to X iff

$$\forall \xi \in \mathbb{R}^d, \quad \lim_{n \rightarrow \infty} \Phi_{X_n}(\xi) = \Phi_X(\xi).$$

11.4. Central limit theorem.

Theorem 11.12 (Scalar central limit theorem). Let $(X_n)_{n \geq 1}$ be a sequence of real r.v independent with same law, $X_1 \in L^2$. Let $\sigma^2 = \text{var}(X_1)$, then

$$\frac{X_1 + \cdots + X_n - n\mathbb{E}[X_1]}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\text{(law)}} \mathcal{N}(0, \sigma^2).$$

Equivalently, $\forall a < b$,

$$\lim_{n \rightarrow \infty} \mathbb{P}(X_1 + \cdots + X_n \in (n\mathbb{E}[X_1] + a\sqrt{n}, n\mathbb{E}[X_1] + b\sqrt{n})) = \frac{1}{\sigma\sqrt{2\pi}} \int_a^b e^{-\frac{x^2}{2\sigma^2}} dx.$$

Definition 11.13 (Gaussian centered vector). Let C be a square $d \times d$ symmetric positive matrix, with real valued entries. A square integrable r.v valued in \mathbb{R}^d is said to be a centered Gaussian vector with covariance C if

$$\forall \xi \in \mathbb{R}^d, \quad \Phi_X(\xi) = e^{-\frac{1}{2}\xi^t C \xi}.$$

We also say that X follows the law $\mathcal{N}(0, C)$.

Remark 11.14. $X \sim \mathcal{N}(0, C) \Rightarrow (\mathbb{E}[X] = 0, K_X = C)$.

Lemma 11.15 (Existence of Gaussian centered vectors). Let $A = \sqrt{C}$ and $(Y_i)_{1 \leq i \leq d}$ independent real r.v following the law $\mathcal{N}(0, 1)$, then $X = AY$ follows $\mathcal{N}(0, C)$.

Theorem 11.16 (Vectorial central limit theorem). Let $(X_n)_{n \geq 1}$ be a sequence of r.v valued in \mathbb{R}^d independent with same law, $X_1 \in L^2$, $C = K_{X_1}$, then

$$\frac{X_1 + \cdots + X_n - n\mathbb{E}[X_1]}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\text{(law)}} \mathcal{N}(0, C).$$

12. Ergodic theory

12.1. Basic results.

Definition 12.1. Let (E, \mathcal{E}, Γ) be a measure space.

(i) A map $\theta : E \rightarrow E$ is called measure preserving if: $\forall A \in \mathcal{E}, \quad \Gamma(\theta^{-1}(A)) = \Gamma(A)$. In this case,

$$\forall f \in L^1, \quad \int_E f d\Gamma = \int_E f \circ \theta d\Gamma.$$

(ii) A measurable function f is called θ -invariant if $f = f \circ \theta$.

(iii) A set $A \in \mathcal{E}$ is called θ -invariant if $\theta^{-1}(A) = A$. The family \mathcal{E}_θ of θ -invariant sets is a σ -algebra and f invariant iff f is \mathcal{E}_θ -measurable.

Definition 12.2. The map θ is called ergodic if

$$A \in \mathcal{E}_\theta \Rightarrow (\Gamma(A) = 0 \text{ or } \Gamma(E \setminus A) = 0).$$

Remark 12.3. f θ -invariant for θ ergodic implies f constant Γ -a.e.

Theorem 12.4 (Birkhoff). *Let (E, \mathcal{E}, Γ) be σ -finite,. Let θ be a measure preserving map. Given $f \in L^1$, let*

$$\begin{cases} S_0(f) = 0 \\ S_n(f) = \sum_{k=0}^{n-1} f \circ \theta^k, \end{cases}$$

then $\exists \bar{f} \in L^1$ θ -invariant such that

$$\frac{S_n(f)}{n} \xrightarrow[n \rightarrow \infty]{} \bar{f} \quad \Gamma \text{ a.e.}$$

Lemma 12.5 (Ergodic Lemma). *Under the assumptions of Birkhoff's theorem, let $S^*(f) = \sup_{n \geq 0} S_n(f)$, then*

$$\int_{S^*(f) > 0} f d\Gamma \geq 0.$$

Theorem 12.6 (Von Neumann's). *Assume $\Gamma(E) < +\infty$. Pick $1 \leq p < +\infty$, θ -meaure preserving and $f \in L^p$. Then*

$$\frac{S_n(f)}{n} \xrightarrow[n \rightarrow \infty]{L^p} \bar{f}$$

for some $\bar{f} \in L^p$ θ -invariant.

12.2. **Application to iid.** Consider the infinite product space

$$E = \mathbb{R}^{\mathbb{N}} = \{(x_n)_{n \geq 1}, x_n \in \mathbb{R}\}$$

equipped with the cylindrical σ -algebra $\sigma(\mathcal{C})$ generated by cylinders

$$\mathcal{C} = \{A = \prod_{n=1}^{+\infty} A_n, A_n \in \mathcal{B}, A_n = \mathbb{R} \text{ for some } n \geq N\}.$$

Given $(X_n)_{n \geq 1}$ real valued independent r.v on $(\Omega, \mathcal{F}, \mathbb{P})$ with law m , the map

$$X : \Omega \rightarrow E, \quad X(w) = (X_1(w), X_2(w), \dots)$$

is measurable and the image measure $\Gamma = P_X$ is the unique measure $\sigma(\mathcal{C})$ satisfying

$$\Gamma(\prod_{n=1}^{+\infty} A_n) = \prod_{n=1}^{+\infty} m(A_n).$$

Definition 12.7. *The product space $(E = \mathbb{R}^{\mathbb{N}}, \sigma(\mathcal{C}), \Gamma)$ is called the canonical model associated to the sequence of iid $X(n)_{n \geq 0}$.*

Lemma 12.8. *The shift map*

$$\theta : E \rightarrow E, \quad \theta(x_1, x_2, \dots) = (x_2, x_3, \dots)$$

is Γ -measure preserving and ergodic.

By applying Von Neuman to

$$f : E \rightarrow \mathbb{R}, \quad f(x) = x_1,$$

we obtain the L^1 version of the strong law of large numbers.

Theorem 12.9 (Strong Law of Large Numbers, L^1 version). *Let $(X_n)_{n \geq 1}$ be real valued independent r.v with same law and $\mathbb{E}[|X_1|] < +\infty$, then*

$$\mathbb{E} \left[\left| \frac{X_1 + \dots + X_n}{n} - \mathbb{E}[X_1] \right| \right] \xrightarrow[n \rightarrow \infty]{} 0.$$