PROBABLITY AND MEASURE

PIERRE RAPHAEL

1. o-algebra and the monotone class Lemma

Definition 1.1 (c-algebra). Let E be a set. A o-algebra (or tribe) on E is a family
A C P(E) such that

(i) E€ A

(i) Ac A= A°=FE\Ac A

(ZZZ) A, e A= UnZOAn cA

Definition 1.2 (Generating set). Let C C P(E), we let o(C) be the smallest o-
algebra containing C.

Definition 1.3 (Borel o-algebra). If E is a topological space, we let B(E) be the
o-algebra generated by the open sets of E.

Definition 1.4 (Product o-algebra). Given (F1, A1), (E2,As), we let
.A1 ®A2 = J({Al X Ag,Al S Al,AQ € .Ag}) .

Proposition 1.5. If Ey, Ey are separable metric spaces, then B(E1) ® B(E3) =
B(El X Eg).

Definition 1.6 (Monotone class). A family M C P(E) is a monotone class if:
(i) E € M

(ii)) A,B € M and A C B imply B\A € M.

(111) Ay, € M increasing family implies Up>0Ay, € M.

Definition 1.7. Let C C P(E), we let M(C) be the smallest monotone class con-
taining C.

Lemma 1.8. A monotone class is a o-algebra iff it is stable by finite intersection.

Proposition 1.9 (Monotone class Lemma). Let C C P(E) stable by finite intersec-
tion, then M(C) = o(C).

2. Measure

Definition 2.1 (Measure). A (positive) measure on (E,.A) is a map p : A — [0, 0]
with:

(i) p(@) =0

(i) An € A two by two disjoint then p(Un>0A4n) = 3,50 #(An).

Proposition 2.2. Let (E, A, i) be a measure space.

(1) Let Ay, be an increasing family A, C Api1 then p(Up>0A4y) = limy, oo p(Ay).
(11) Let By, be a decreasing family By4+1 C By, with pu(By) < +o0o then p (Np>0By) =
limy, 00 11(Bp)-

Definition 2.3 (Probability measure). We say p is finite if u(E) < +oo. If u(E) =

1, we call p a probability.
1
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Definition 2.4 (o-finite). We say p is o-finite if there exists an increasing sequence
E,, with Up>oE, = E and ¥Yn, pu(E,) < +00.

Definition 2.5 (Negligible set ). A set N C E is negligible if there exists A € A
with pu(A) = 0 such that N C A. A property is said to hold a.e if the set of points
x € E where it does not hold is negligible.

Definition 2.6 (Completeness). We say u is complete if A contains all the negligible
sets.

Proposition 2.7 (Uniqueness of measures). Let p,v be two measures on (E,A).
Assume:

(i) A= o(C) with C stable by finite intersection;

(ii) VA € C, u(A) = v(A);

then we can conclude that = v on the full o-algebra A whenever one of the
following two conditions holds:

(i) w(E) = v(E) < oo
(i1) 3 an increasing sequence E, C C with E = Uy,>0E, and Vn, u(E,) < 400.

3. Measurable functions

Definition 3.1 (Measurable spaces). Let (E,.A), (F,B) be two measurable spaces.
A map f: E — F is measurable if VB € B, f~1(B) € A.

Proposition 3.2. The composition of two measurable functions is measurable.
Proposition 3.3. Assume B = o(C), then f is measurable iff VB € C, f~1(B) € A.
Proposition 3.4. A continuous function f : (E,B(E)) — (F,B(F)) is measurable.

Lemma 3.5. Let fi : (E,A) — (F1,B1) and fo : (E, A) — (F»,Bs3). Then f :
(E, A) — (F1 X F»,B1 ® Ba) defined by f(x) = (fi(z), fo(x)) is measurable iff each

component f1, fa is measurable.

Lemma 3.6. Let f,g: (E,A) — (R,B(R)) be two measurable functions, then the
following functions are measurable:

(i) any linear combination of (f,g);

(ii)fg;

(iii) fT =max(f,0), f~ =max(—f,0).

Definition 3.7 (limsup, liminf). We let

limsupa, = lim | |supag | = inf | supay
n—00 n—00 k>n n>0 k>n

and
it = i 1 (af o) <sup (1nf o).
Proposition 3.8. Let f, be a sequence a measurable functions from (E,A) to
(R,B(R)), then:
(i) the functions

sup fn, inf f,, limsup f,, liminf f,
n>0 n=>0 n—00 n—o00

are also measurable. In particular, (f, — f pointwise = f measurable);
(ii) the set {x € E; fn(x) has a limit as n — oo} is measurable.
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Definition 3.9 (Measure tranported by an application). Let f : (E, A) — (F,B)
be a measurable function and p a measure on (E, A). The image measure of u by
[, noted f.(u) (sometimes f(u)) is the measure defined by

VB € B, fou(B) = u(f(B)).

4. Integration
4.1. Integration of positive functions.

Definition 4.1 (Simple function). Let (E,.A, u) measure space. A function f :
(E,A) — R is called simple if

N
f=Y ajla;, Aj€A and U Aj=E
j=1
for some a; € R. If the values o are distinct, this is the canonical representation

of f.
Definition 4.2 (Integral of simple functions). Let f simple valued in R, we define

/fdu = aju(4;)
j=1

with the convention: (o; = 0,u(A4;) = +00) = aju(A;) = 0. This number does
not depend on the representation of f. We let £1 be the set of positive (> 0) simple
functions.

Definition 4.3 (Integral of a positive function). Let (E, A, u) measure space and
f:(E,A) = Ry a positive measurable function. We define

/fd,u: sup /hdu.
h€£+,h§f

Lemma 4.4 (Basic properties). There holds:
(i) f > g= [ fdp> [ gdp.
(i) p({z € E, f(z)>0})=0= [ fdu=0.

Theorem 4.5 (Monotone convergence). Let (E,A,u) measure space and f, :
(E, A) — R4 an increasing sequence of positive (> 0) measurable functions. Let

f=1lim, 1 f,, then
/ fdp = tim 1 / Fudp.

Proposition 4.6 (Approximation by simple functions). Let f be measurable positive,
then there exists an increasing sequence fp of positive simple functiona such that

Vo € E, limy, o0 fn(z) = f(2).

Proposition 4.7 (Basic properties). All functions are assumed to be measurable
positive on (E, A, u) measure space.

(i) Va,b>0, [(af +bg)dp=a [ fdu+b e gdu.

(i) f (Zn>0 fn) dp = Zn>0ffndﬂ

(i) (Markov) p({z € E, f(z) > a}) < 1 [ fdu.

(iv) ffd,u<oo:>f<oo a.e.

(v) ffdu—Ojf—O a.e.

(vi) f=g ae= [ fdu= [ gdu.
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Theorem 4.8 (Fatou). Let (F,A,u) measure space and f, measurable positive,

then
/ <lim inf fn) dp < lim inf (/ fndu> .
n—o0 n—oo

4.2. Integration of real valued functions.

Definition 4.9 (Integral of real valued functions). Let (E,.A, u) measure space and
f:E—R. We say that f is integrable if [ |f|dp < +oo and we then define

[ in= [ rran- [ i

where f+ = max{f,0}, f~ = max{—f,0}. We note L}(E, A, i) the space of real
valued integrable functions.

Proposition 4.10 (Linearity). £LY(E, A, u) is a vector space and f — [ fdu is a
linear form.

Proposition 4.11 (Basic properties). Let f,g € LY(E, A, ).
(i) | fdu| < [ |fldp.

(i) f < g= [ fdu < [ gdu.

(ii) f =g ae= [ fdu= [gdp.

Theorem 4.12 (Lebesgue’s dominated convergence). Let f, € LY(E, A, p) such
that:
(i) 3f real valued measurable with lim,_,« fn(z) = f(z) a.e.;
(ii) 3g : E — Ry € LYE, A, 1) such that Vn, |fn(z)] < g(z) a.e..
Then f € LYE, A, u) and
nlggo/ [fa = fI=0.

4.3. Integral depending on a parameter.

Theorem 4.13 (Continuity below the integral sign). Let (E, A, 1) a measure space
and (U,d) a metric space. Let f:U x E— R and ug € U. Assume:

(i) Yu € U, the map = — f(u,x) is measurable;

(it) a.e x € E, the map u — f(x,u) is continuous at up;

(iii) 3g € LY(E, A, 1) such that Yu € U, | f(u,z)| < g(z) a.e..

Then the function F(u) = [ f(u,z)du is well defined for all uw € U and continuous
at ug.

Theorem 4.14 (Derivability below the integral sign). Let (E, A, i) a measure space
and I C R an open interval. Let f : I x E — R and ug € I. Assume:

(i) Vu € I, the map = — f(u,z) is in LY(E, A, p);

(ii) a.e x € E, the map u — f(x,u) is differentiable at ug with derivative noted
of .

ou (u07 I‘),

(111) g € L’}r(E,A, p) such that Vu € I, |f(u,z) — f(ug,x)| < g(x)|u —ug| a.e..
Then the function F(u) = f f(u,z)dp is differentiable at uy with

F'(ug) —/gi(uo,x)d,u.

5. Construction of measures

Proof is this section are non examinable, but statements are examinable.



5.1. Lebesgue measure.

Definition 5.1 (Outer measure). Let E be a set. A map p* : P(E) — [0,00] is
called an outer measure if:

(i) p*(0) = 0
(i) p* is increasing: A C B = p*(A) < p*(B).
(i1i) p* is o sub additive: VA, C E, p*(Ur>0Ak) < D o 1 (Ak)-

Definition 5.2 (Measurability). A set B C E is called p*-measurable if
VACE, p(A)=p"(ANB)+ pu* (AN B°).
We let M(p*) be the set of u*-measurable sets.

Theorem 5.3 (Construction of a measure from an outer measure). M(u*) is a
o-algebra in E and the restriction of u* to M(u*) is a complete measure.

Theorem 5.4 (Lebesgue measure on R). We define

VA CR, M(A)=inf {Z(bi —a;), AC UieN]ai,bi[} .
ieN

Then:

(i) X* is an outer measure on R.

(11) B(R) C M(X*).

(i11) Ya < b, X\*(Ja,b]) = \*([a,b]) = b —a.

The restriction of \* to M(X*) is called the Lebesque measure on R.

Definition 5.5. Let (E, A, 1) be a measure space, we let A= o(AUN) where N
are the p-negligible sets of E.

Proposition 5.6. The Lebesque tribe M(X*) is identical to B(R).

Proposition 5.7. Let f : R — R Borelian. Let g : R — R such that g = f A-a.e,
then g is measurable for B(R).

5.2. Link to Riemann.

Definition 5.8 (|Riemann integrability). Let I C R be an interval and f : I — R
bounded. Let

S_(f) =sup{ [, h(z)dx, h stair, h< f}

S (f) = inf{[; h(z)dz, h stair, h> f}.

We say that [ is Riemann integrable if
S+ (f) =5-(f)
and then the Riemann integral of f is S(f) = S+(f).

Proposition 5.9 (Relation to Riemann). Let f : I — R Riemann integrable, then
[ is measurable for B(I) and S(f) = [; fd\.

5.3. An example of non measurable set.

Proposition 5.10. Let R/Q be the set of equivalence class for the relation x ~
yer—y e Q. Let F={z,,a € R/Q} where xz, € [0,1] is a representant of the
equivalence class of a. Then F' is not Lebesgue measurable.

Remark 5.11. The existence of F' requires the axiom of choice because R/Q is
uncountable, and this is necessary to construct Lebesgue non measurable sets.
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5.4. Lebesgue-Stieltjes measures.

Proposition 5.12. Let (E,d) be a metric space and p a finite measure on (E, B(E)).
Then for all A € B(E):

u(A) =inf{u(U), U open ,AC U} =sup{u(F), F closed ,F C A}

Theorem 5.13 (Lebesgue-Stieltjes). The following hold.
(i) Let p be a finite measure on (R, B(R), then its distribution function

Ve e R, F,(z)=p(] —oo,z])

is increasing, bounded, continuous on the right and lim,_,_ F,(x) = 0.

(ii)) Given F : R — R increasing, bounded, continuous on the right and with
lim,_,_o F(x) = 0, then there exists a unique finite Borelian measure p such that
F,=F, and then

F(b) = F(a) = p(la, b]).

6. LP spaces

Definition 6.1 (LP(E, A, n),1 < p < o). Let (E, A, n) be a measure space.
(i) Given p € [1,00[, we define

LP(E,A ) ={f:E—R measurable with /\f|pd,u < 400.}

(i) We define ||fll, = ([ |£|Pd)? -
(iii) We let LP(E, A,pu) = LP(E, A, p)/ ~ for f ~g< f =g pa.e.

Definition 6.2 (L*°(E, A, n),1 < p < 400). Let (E, A, n) be a measure space.
(i) We define

LPE, A u)={f: E—R measurable, 3C e Ry, |f|<C p—a.e.}

(i) We define || flloo = inf{C € Ry, |f|<C p—a.e}.

(i) We let L>®(E, A, pu) = L®(E, A,u)/ ~ for f ~g< f =g pae.
Proposition 6.3 (Holder). The following hold.

() V1< p,p' < oo, [Ifgldu < | fllpllglly for 5+ 5 =1.

(i1) ¥1 < p,pi < oo, |ILX, fillp, < UL || fillp, for % =i ;%'

(iii) V1 < pr,ps < o0, [Iflly < IFIG A1 for L= & 4 1=,

Theorem 6.4 (Riesz-Fischer). For all 1 < p < +oo, (LP(E, A, p),| - |lp) is a
Banach space (ie a complete normed vector space). For p = 2, (LQ(E,.A, w, (-, >2)
is a Hilbert space (ie a complete space equipped with a scalar product) for the scalar

product (f,g)2 = [ fgdp.

Proposition 6.5. Let f,,, f € LP(E, A, p) with limy, 1 || fn— fllp = 0. Then there
exists a subsequence ¢(n) strictly increasing such that limy, oo fom) () = f(z) for
p-a.e x € .

Proposition 6.6 (Dense subsets). The following holds.

(i) Let 1 < p < o0, then simple functions are dense in LP(E, A, ).

(i) Let 1 < p < oo, then CX(RY) is dense in LP(RY, B(R),\) where X is the
Lebesgue measure (and this is obviously false for p = oo).



7. Product measure and Fubbini’s theorem

7.1. Product measure and Fubbini. We let (E1, .4,), (F2,.A2) be two measur-
able spaces.

Definition 7.1 (Horizontal and vertical slices of sets). Let B C Ej x Es.
(i) For x € Ey, the vertical slice is B, = {y € Es, (z,y) € B}.
(i) For y € Es, the horizontal slice is BY = {x € E1, (z,y) € B}.

Definition 7.2 (Horizontal and vertical slices of functions). Let f : Ey x Ey — F.
(i) For x € Ey, we let f, = f(x,:) : By — F.
(i) Fory € Eo, we let f¥Y = f(-,y) : By — F.

Theorem 7.3 (Fubini measurability). The following hold.

(i) Pick B € A; ® Ay, then Vx € Ey, By € A2 and Vy € Ey, BY € A;.

(i) Let f(Ey x Ea, A1 ® A2) — (F,B) measurable, then Vx € Ey, fy : (E2, A2) —
(F,B) is measurable, and ¥y € Eo, fY: (Ey, A1) — (F,B) is measurable.

Theorem 7.4 (Construction of the product measure). Let u,v be two o-finite mea-
sures on resp. (E,A) and (F,B).
(i) There exists a unique measure m on (E x F, A® A) such that

YAe A, VBeB, m(AxB)=u(Au(B)

with the usual convention 0-0o = 0. This measure is called the product measure and
is o-finite, we note it p Q@ v.

(i1) For all C € AR B,
peuC) = [ vCantda) = [ i),

Theorem 7.5 (Fubini-Tonnelli). Let u,v be two o-finite measures on resp. (E,A)
and (F,B). Let f: E x F — [0,00] a measurable function.

(i) The functions x € E — [ f(x,y)v(dy) andy € F — [, f(x,y)u(dz) are resp.
A-measurable and B-measurable.

(ii) There holds

L, =[] [ s o) = [ | [ st v

Theorem 7.6 (Fubini-Lebesgue). Let p, v be two o-finite measures on resp. (E,A)
and (F,B). Let f e L{EX F,A® B, u®v).

(i) For y a.ex € E, f, € LY(F,B,v) andv a.ey € F, f¥ € LY(E, A, ).

(i) The function x — [5 f(x,y)v(dy) is well defined for p a.e x € E and belongs
to LY(E, A, ). The function y — [y, f(z,y)p(dz) is well defined for v a.e y € F
and belongs to LY(F,B,v).

(iii) There holds

EfodM@dV:/[/f:Ey dy)] plde) = /[/fxy d:v)] v(dy).

7.2. Applications.

Definition 7.7 (Convolution). Let f,g : R — R measurable. For x € R?, we
define the convolution product by

frg@) = [ 1a =)
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Proposition 7.8. Let f,g € L'(R? B(R9), \), then for A a.e x € R?, the convolu-
tion fx g(x) is well defined. Moreover, fxg € L'(R%, B(R4), \) with
1f gl < A ligllee-

Proposition 7.9 (Young’s inequality). Ler 1 < r,p,q < 400 with 1 + % = %
then

1
+1,

If > gller <[ fllzellgllza-

Definition 7.10 (Approximation of identity). We say a sequence of functions ¢y, :
R? — R is an approzimation of identity if:

(i) on = 0;

(i3) there exists K C RY compact such that Suppo, C K;

(113) ¥6 > 0, limy, 00 f|x|<6 ¢n(x)dx = 0.

Proposition 7.11 (Density of smooth functions in LP(R%)). Let ¢, be an ap-
prozimation of identity. Let 1 < p < oco. Then for all f € LP(RY B(R%),)\),
bnx [ € CP(RER) and limy, o0 || frn — fllze = 0.

8. Properties of the Lebesgue measure

Theorem 8.1 (Change of variables formula). Let ¢ : U — D C! diffeomorphism.
Then for all Borelian function f : D — R or integrable f € LY(D, \), there holds

[ s@yz = [ ol ow)du.
D U
Theorem 8.2 (Measure on the sphere). Let Ay be the Lebesgue measure Ag on R?.
(i) For every Borelian A € B(S%1),
wa(A) = dAq[(A)]

where T'(A) = {rz;z € A,r € [0,1]}, defines a finite measure on S?~1, invariante
by the linear isometries of R%, and with

d
272

r(s)

(i4) For every Borelian positive (or integrable) function f on R?, there holds

f(z)dA\(z) = /OO f(rm)rdildrdwd(z).
Rd 0 Jga-1

wd(sdfl) —

9. Random variables
9.1. Basic definitions. We fix once and for all (2, .4, P) probability space.

Definition 9.1 (Random variable). Let (2,.A4) and (E,E). A measurable map
X (QA) — (E,E) is called a random variable with value in E. If E = R, we
speak of real random variable,

Definition 9.2 (Law). The law of a random variable X is the probablity image of
P by X:

VBe&, Px(B)=P(XeB)=P (X*U(B)) .



Remark 9.3. If E is countable (ie the r.v is discrete), then

Px =Y P(X =x)d,
zelR

where d, is for x € E the measure

1if z€B

VB €&, 0,(B)= ‘ 0 otherwise

Definition 9.4 (Density of a r.v). A r.v with value in (RY, B(R?)) is said to have
a law with density p if

dPx = p(z)dx & VBE, Px(B)= /Bp(sv)dx.

(dz is Lebesgue)

Definition 9.5 (Expectation). Let X be a real r.v. We define its expectation by
E[X] = /Q X (w) P(dw).
Proposition 9.6. Let X be a r.v with value in (E,E) and f: (E,E) — [0,00], then
B0 = [ fla)P(do).

Proposition 9.7 (Marginals). Let X = (Xi,...,Xy) be a r.v. with value in RY.
Assume that the law of X has density p(x1,...,xq), then ¥j € {1,...,d}, the law
of X has density

pj(.’L') = /d ) p({L‘l, ey Lj—1, Ly Ty e vy xd)dasl ‘e d;vj_ldxj+1 e d(L‘d.
Rd—
9.2. Classical laws.

Definition 9.8 (Discrete laws). The following are classical examples of discrete
laws.

(i) Uniform law. Let E be a set with #E = n, a r.v has uniform law if Vo € E,
P(X =z)= 1.

n

(ii)Bernoulli. Let p € [0,1], this is the law of a r.v X with value in {0,1} such that
P(X=1)p, P(X=0)=1—p.
It is intepreted as the result after one throw of a biaised coin which falls on head

with probability p.

(iii) Binomial B(n,p), n € N*, p € [0, 1] It is the law of a r.v with values in {1, ... ,n}
such that

P(X = k) = (1 - p)pt.

It is interpreted as the number of heads obtained after n throws of the biaised coin.

(iv) Poisson’s law of parameter A > 0. It is the law of a r.v with value in N and
DL

P(X =k)= W€
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It corresponds to the number of rare events during a long period. Mathematically,
if Xy, follows the law B(n,py,) and np, — A as n — +o0, then

DL
71113010 P(X,=k)= e
Definition 9.9 (Continuous laws). The following are classical examples of contin-
uous laws. Let X be a r.v with value in R and density p(x).

(i) Uniform law on [a,b], a < b: p(x) = 52 Lg(2).

(ii) Exponential law with parameter A > 0: p(z) = Ae *1g, .. Ezponential laws
have the "no memory" property

P(X >a+b)=P(X >a)P(X >b).

(iii) Gaussian law N'(m,0?), m € R, o > 0:

p(x) = U\}%eXp <_<$2;2m)2> :

The parameters m, o are interpreted as

m =E[X], o?=E[(X —m)?.

By convention, we say that a r.v. constant equal to m follows the Gaussian law

N (m,0). If X follows N (m,o?),
Y\ €R, AX 4 pu follows N(Am + p, \2a?).
9.3. Structural definitions.

Definition 9.10 (Distribution function). Let X be a real r.v, its distribution func-
tion is Fx : R — [0, 1] given by

Fx(t) = P(X <t) = Px(] — 00,t]), VteR.

It is increasing, continuous on the right with lim;_,_ o Fx (t) = 0, limy_ o0 Fx(t) =
1. Moreover,

Pla< X <b)=Fx(b)—Fx(a™) for a<b
Pla< X <b)=Fx(b")— Fx(a) for a<b.

Definition 9.11. Let X be a r.v valued in (E,E), the o-algebra generated by X is
o(X)={X"YB), Beé&}.

If (Xi)ier is a family of r.v valued in (E;, &;), the o-algebra generated by the family
1s the smallest o-algebra which makes all X; measurable ie

U[(Xi>z’el] =0 ({XZI(BI),Bz € 51}) .

Proposition 9.12. Let X r.v valued in (E,€) and Y real r.v. TFAE:
(1) Y is 0(X) measurable;
(ii) there exists f : (E, &) — (R, B(R)) measurable such that Y = f(X).
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9.4. Moments and variance.

Remark 9.13. Theorems of integration in probababilistic language:
(i) Monotone convergence: X,, >0, X,, T X = E(X,,) T E(X).
(ii) Fatou: X, > 0= E[liminf X,] < liminf E[X,,].
(iii) Lebesgue: |X,| < Z,E[Z] < +00, X,, = X a.e = E[X,,| — E[X].
1
(iv) Holder: E[|XY]] < (E[|X[P])» (E[;X\p’]) Por L+ 1 =1,1<pp < +oo.
(v) LP embeddings: || X||, < [| X, for 1 <r <p < 4o0.
Definition 9.14 (variance). Let X € L?(2, A, P). The variance is
var(X) = E [(X - E[X]ﬂ
and the standard deviation is
ox = y/var(X).
Lemma 9.15. var(X) = inf,eg E[(X — a)?].
Remark 9.16. Classical inequalities in probabilistic language:
(i) Markov: P(X >a) < EIX].

a

(ii) Bienayme-Tchebicheff: if X € L*(Q, A, P), P (| X —E(X)| > a) < var(X).

a

Definition 9.17 (covariance). Let X,Y € L%(Q, A, P), their covariance is
cov(X,Y) = E[(X —E[X]E[(Y - E[Y])] = [XY] - E[X]E[Y].
If X = (X1,...,Xq) has coordinates in X; € L*(Q, A, P), then the matriz covari-

ance 18

KX = (COV(XZ', Xj))lgi,jgn .
Proposition 9.18 (Linear regression). Let (X,Y1,...,Y,) be real r.v in L*(Q, A, P).
Then

oo CE[(X (Bt BiYi 4 V)| = E[(X - 27

where
n
Z =E[X]+ ) a;(V; —E[Y]])
j=1
and (o)1<j<n s any solution to the system
n
Zajcov(Yj,Yk) =cov(X,Ys), 1<k<n.
j=1
9.5. Characteristic function.
Definition 9.19. Let f € L'(R%), we let f(£) = Jpa e f(z)da.

Lemma 9.20 (Inverse Fourier transform). Let f € C°(R?), then

_ ! G F
@) = g [ =S Fe)ae.

Lemma 9.21 (Plancherel). Let f, g € C°(R?), then

hester e
[ it = ok [ o

This allows us to uniquely extend the Fourier as a continuous isomorphism of L?.
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Definition 9.22 (Characteristic function). Let X be a 7.v valued in RY, its char-
acteristic function is the function ®x : R* — C defined by

2x(6) =B [*¢] = /R et Px (da).

Lemma 9.23 (Characteristic function of one dimensional Gaussian). Let X be a
real r.v with las N'(0,02), then

2.2

By()=e T2,

Theorem 9.24. The characteristic function of a r.v valued in R® characterizes the
law of this r.v. Equivalently, the Fourier transform defined on the space of probability
measure on R? is imjective.

The proof relies on the following (density related) statement.

Proposition 9.25. Let u, v be two probability measures on R, Assume that for all
test function ¢ € Cy(R?) (ie continuous bounded and real valued),

/qubduz/wqbdu

Proposition 9.26. Let X = (X1,...,X,) r.v valued in R? and square integrable.
Then ®x is C? and

n d
=1+ DGR — 5 3 GBI X + olle]).
=1

7j=1k=1

then = v.

Definition 9.27 (Generating function). Let X r.v valued in N. The generating
function of X is the function gx : [O 1] — Ry given by

9x(r) =Y P(X

n>0

10. Independance
10.1. Definitions.

Definition 10.1 (Independance of events). We say n events Ay, ..., A, are inde-
pendent iff for all {j1,...,5p} C{1,...,n},
P(Aj;;N---NAj)=P(A;)...P(4,).
Lemma 10.2. The n events Ay, ..., A, are independent iff
P(Bin---NB,)=P(By)...P(By)
whenever B; € 0(A;) =10, A;, AS, Q}, Vie {1,...,n}.

Definition 10.3 (Independance of tribes). Let By,...,B, be sub o-algebra of A.
We say they are independent iff

VAL € By,..., Ay € By, P(A1N---NA,) = P(Ay)...P(Ay).

Definition 10.4 (Independance of re.v). Let Xi,..., X, be r.v with values in
(E1,&1), ..., (En,&n). We say they are independent iff

VFyeé&,...,.FLe&, P{XieFmh}n---n{X,eF,})=PX1€F)...P(X, € F,).



13

Remark 10.5. (i) Let By,..., B, family of independent sub o-algebra, then if X;
Bi-measurable r.v, then (X7,..., X)) are independent.
(ii) Events Aq,..., A, are independent iff the sub o-algebra (c(A41),...,0(Ay)) are.

Definition 10.6. Let (B;);e;r an arbitrary family of sub o-algebra, we say that the
family is independent iff V{i1,... ip}, (B1,...,B;,) are independent. We say a an
arbitrary family (X;)ier of r.v is independent iff (o(X;))icr is.
Corollary 10.7. Let (X,)nen a family of independent r.v, then ¥Vp > 1,

Bl = O'(Xl, e ,Xp), 82 = O'(Xerl,Xp+2, . )
are independent.

10.2. Characterization of independance.

Theorem 10.8 (Characterization with law). The r.v (X1,...,X,) are independent
iff the law of X = (X1,...,X,,) is the product of the law of the X;’s:
In this case, for all f; > 0 measurable on (E;,&;), 1 <i < n:

B[ I, £i(X0)| = T E (X))
Corollary 10.9. Let X1, X be two L? integrable r.v, then cov(X1, X2) = 0.

Theorem 10.10 (Characterization with densities). Let (Xi,...,X,) real r.v.
(i) Assume that Vi € {1,...,n}, the law of X; has density p;, and (X1,...,X,) are
independant. Then the law of X = (X1,...,X,) is
p(x1, ... an) = IGL pi(a;).
(ii) Conversely, assume that the law of X = (X1,...,X,) has a density of the form
p(Il’ B l‘n) = H?:lqi(:zi)
for some Borelian positive functions q;. Then (X1,...,Xy) are independant and

Vi e {1,...,n}, the law of X; has density p; = Cip; for some constant C; > 0.

Remark 10.11. Let (Xy,...,X,) real r.v, then TFAE:

(i) (Xi,...,X,) are independent.

(11) Val, e, Oy € R, P(Xl <ag,... ,Xn < an) = H?le(XZ < ai).
(iii) For all f1,..., f, continuous bounded from Rto Ry, E {H?Zlfi(Xi)] =1 E[fi(Xi)].
(iv) The characteristic function of X = (X1,..., X;) is ®x (&1, ...,&,) =1, x, (&).
Proposition 10.12. Let By,..., B, be sub o-algebra of A. Assume:

(i) Yi € {1,...,n}, there exists C; C B; monotone class stable by finite intersection
with o(C;) = Bi;

(ii) VC1 €Cq,...,C, €Cy, P(Cl ﬁ---ﬂCn) = P(Cl)P(Cn)

Then By, ..., B, are independent.

Corollary 10.13 (Regrouping). Let By, ..., B, independent sub o-algebra. Then
for all0 <ny <--- <nyp=mn, the sub o-algebra

D1 :Bl\/"'\/BnlEO’(Bl\/"'\/Bm)
Dy = Bpii1 V-V By
Dy =Bu, 141V VB,

are independent.
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Corollary 10.14. If (Xi,...,X,,) are independent, then the r.v

Yi=Xy,o X)), o Yo = (X 141,00, X0y)
are also independent.
Definition 10.15 (Independance for an infinite family). (i) Let (B;);c; be an ar-
bitrary sub family of tribes of A. We say that this family is independent if for all
{iv, ... ip}, (Biy, ..., Bi,) is an independent family.

(ii) We say an arbitrary family (X;)ier is independent of the family of tribes (o(X;)),cr
18.

Proposition 10.16. Let (X,,)n,>1 be a family of independent r.v. Then for all
integer p € N, the tribes By = o(Xo,...,Xp) and By = o(Xpy1, Xpio,...) are
independent.

10.3. Borel Cantelli.
Lemma 10.17 (Borel Cantelli). Let (A, )nen a family of events, and define
limsup A, = NS, (U2, Ak)
liminf 4,, = U2, (N2, Ak)
(i) If > pen P(An) < 400, then P(limsup A,) = 0. Equivalently,
a.s, {neNweA,} is finite

(ii)If >, cn P(An) = +00 and the events A, are independent, then
P(limsup A,) = 1. Equivalenlty,

a.s, {neNweA,} isinfinite.
10.4. Sum of independent random variables.

Definition 10.18 (Convolution of measures). Let u,v be two probability measures
on Re, then pxv is the image of u® v by the map (x,y) — = +y. Bquivalently, for
any positive measurable ¢:

[ otomnria) = [ [ o+ gidoiay).
Rd Rd JRA

Proposition 10.19. Let X,Y be two independent r.v with value in RY.

(i) The law of X +Y is Px = Py. In particular, if Px has density px and Py has
density py, then Pxyy has density px * py.

(11) The characteristic function of X +Y is ®x4y(§) = @x (&) Py (§). (Equivalently,
if u, v are two probability measures on R, then [+ v = fi.).

(i17) If X, Y are square integrable, then Kx 1y = Kx+ Ky . In particular, ford =1,
var(X +Y) = var(X) + var(Y).

Theorem 10.20 (Weak law of large numbers). Let (X,)n>1 be a family of real
valued independent r.v with same law. If E(X?) < 400, then

Xi+ o+ X, 12

n n—00

E[X1].
Proposition 10.21. Let (X,,)n,>1 be a family of real valued independent r.v with
same law. If B(X{) < +oo, then

X4+ X
a.s Sl B T} — E[X4].
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Definition 10.22 (Convolution semi group). A family of probability measures (put)ier
is said to be a convolution semi group if

po = do
fie * pr = poye, VGt €1

Lemma 10.23. For (u)ier to be a convolution semi group, it is enough that:

(i) if I =N, fiy(&) = [p(9))', VEt € I.
(i) if I =R, [it(€) = e, vt e I.

Examples.

(i) For I = N and n > 0, let p, be the binomial law B(n,p) (where p € [0, 1] has
been fixed), then i, m = fn * fm can be seen by computing fi,(£) = (pe’ +1—p)™.
(ii) For I = R4, t € Ry, let iy be the Poisson law of parameter ¢, then

400 o "
fir(§) = Z Eelkée% = =),
k=0

(iii) For I = Ry, t > 0, let u be the Gaussian law N(0,¢), then
. _ e
fir(§) = e 2.

Important consequences. Let X,Y be two independent real r.v.

(i) If X follows Poisson of parameter A and Y follows Poisson of parameter X', then

X +Y follows Poisson of parameter A + ).

(ii) If X follows the Gaussian law A(m,o?) and X’ follows the Gaussian law

N(m', (0")?), then X + X' follows the Gaussian law N (m +m’, % + (0/)?).

11. Convergence of random variables

11.1. Convergence in probability. We have already introduced

X, L>X<:>P({x €Q: lim X, (w) :X(:n)}> —1

n—oo

and for 1 <p < +o0
X, 2 e lim E[|X — X,P] = 0.
n—oo n—oo

Definition 11.1 (Convergence in probability). We say X,, converges to X in prob-
ability
(P)

X, —— X
n—o0

ifs
Ve > 0, ILm P(|X,—X|>¢)=0.

Proposition 11.2 (Completeness). Let [,%d (Q, A, P) be the quotient of the space of
all r.v with value in R quotiented by the equivalence relation X ~Y < X =Y as..
Then:
(i) d(X,Y) = E[|X — Y| A1] defines a distance on L3,(Q, A, P), and this metric
space is complete.
P

(1) im0 d( Xy X) = 0 & X 20 X

n—oo
Lemma 11.3. If X,, converges a.s to X (or in L), then it also converges in prob-
ability. Conwversely, if X, converges in probability to X, then there exists a subse-
quence X, which converges a.s to X .
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11.2. Strong law of large numbers.

Theorem 11.4 (Kolmogorov’s 0-1 law). Let (X,,)n>1 be a sequence of independent
r.v. Let forn > 1
B, =0 (Xk,k>n),
then the asymptotic tribe
Boo = ngllgn

s Tough in the sense that

VB € B, P(B) e {0,1}.
Theorem 11.5 (Strong law of large numbers, a.e version). Let (X,),>1 be a se-
quence of real independent r.v. with same law and E[|X1|] < +oo, then

)(14_"'+'}(n a.s

n n—00

E[X4].
11.3. Convergence in law.

Definition 11.6 (Test function). (i) We let Cy(R?) be the space of continuous
bounded functions from R — R equipped with the sup norm

@]l = sup |¢(x)].
z€RY
(ii) We let C.(R?) the subset of Cy(RY) of continuous functions with compact support
(where we recall Supp(f) = {z € R4, f(z) # 0}.)

Definition 11.7 (Convergence in law). (i) We say a sequence (fin)n>1 of probability
D
measures over R? converges in distribution to a probability measure pi (jin % iy,

n—oo
if

Vo € Cy(RY), lim / Pdpiy, = / mn

(i) We say a sequence of 1.v. (Xp)n>1 with value in R converges in law (or in

distribution) to X iff Px,, & Px. Equivalently,

n—oo

V6 € G(RY, lim E[4(X,)] = E[p(X)].

Lemma 11.8. Let (pi,, i) be probability measures on R?. TFAE:

. D
(i) i 2 s

n—oo
(i) VG open, liminf u, (G) > u(G);
(i1i) VF' closed, limsup p, (F) < u(F);
(iv) YB Borelian with u(0B) = 0, lim, 00 pin(B) = p(B) where 0B = B\B.

Proposition 11.9. A sequence of r.v. (Xy)n>1 with value in R? converges in law
to X iff the distribution functions Fx, (x) converges to Fx(x) at every point x where
Fx is continuous.

Proposition 11.10 (Weakening test functions). Let (n)n>1, 1 be probality mea-
sures over R, Let H be a subspace of Cy(R?) which closure (for the sup norm)

contains C.(R?). Then TFAE:
(D)

(i) pin —— p-

(ii) ¥V € Co(RY), Timy oo [ ddjty, = [ Gds.
(iii) ¥ € H, limy, o [ ¢dptn = [ ddp.
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Theorem 11.11 (Levy). (i) A sequence of probability measures (i )n>1 converges
in distribution to a probability measure u iff

vg e R’ lim () = (€).

(ii) A sequence of r.v. (Xp)n>1 with value in RY converges in law (or in distribution)

to X iff
vEERT lim Dy, (§) = Dx(€).

11.4. Central limit theorem.

Theorem 11.12 (Scalar central limit theorem). Let (X,),>1 be a sequence of real
r.v independent with same law, X1 € L?. Let 0? = var(X1), then
Xi+---+X,— TLE[Xl] (law)

2
Tn — N(0,07).

Equivalently, Ya < b,

R Al
lim P (X1 +---+ X, € (nE[Xl] + av/n, nE[Xﬂ + b\/’ﬁ)) = / e 22dzx.

n—oo o 27‘(’

Definition 11.13 (Gaussian centered vector). Let C be a square d x d symmetric
positive matriz, with real valued entries. A square integrable r.v valued in R? is said
to be a centered Gaussian vector with covariance C' if

Ve e RY, Dy(€) = e 6C¢,
We also say that X follows the law N (0,C).
Remark 11.14. X ~ N(0,C) = (E[X] =0,Kx = C).

Lemma 11.15 (Existence of Gaussian centered vectors). Let A = VC and (Yi)i<i<d
independent real r.v following the law N(0,1), then X = AY follows N(0,C).

Theorem 11.16 (Vectorial central limit theorem). Let (X,)n>1 be a sequence of
r.v valued in RY independent with same law, X1 € L?, C = Kx,, then

Xi+--+ X, - Tl]E[Xl] (law)
N 0, A0,C).

12. Ergodic theory
12.1. Basic results.

Definition 12.1. Let (E,&,T") be a measure space.
(i) A map 0 : E — E is called measure preserving if: YA € €, (6~ (A)) = (A).

In this case,
VfelLl, / de:/ fofdr.
E E

(i) A measurable function fis called 6-invariant if f = f o 0.
(iii) A set A € € is called O-invariant if 0~1(A) = A. The family & of O-invariant
sets is a o-algebra and f invariant iff f is Eg-measurable.
Definition 12.2. The map 6 is called ergodic if
Ae& = (I'(A) =0 or T'(E\A) =0).

Remark 12.3. f f-invariant for 0 ergodic implies f constant I'-a.e.
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Theorem 12.4 (Birkhoff). Let (E,E,T') be o-finite,. Let 6 be a measure preserving
map. Given f € L', let
So(f) =0
‘ Sn(f) = X5 fo 0",
then 3f € L' 0-invariant such that

Snlf) —— f T ae

n n—0o00

Lemma 12.5 (Ergodic Lemma). Under the assumptions of Birkhoff’s theorem, let

S*(f) = sup,>¢ Sn(f), then
/ f£dr > 0.
S*(f)>0

Theorem 12.6 (Von Neumann’s). Assume I'(E) < +oo. Pick 1 < p < o0,
0-meaure preserving and f € LP. Then

Sn(f) Lr  —=
n n—o00 f

for some f € LP -invariant.
12.2. Application to iid. Consider the infinite product space
E=RY={(z,)n>1, on €R}
equipped with the cylindrical o-algebra o(C) generated by cylinders
C={A= H:SA,L, A, €B, A, =R for some n> N}.
Given (X, )n>1 real valued independent r.v on (2, F,P) with law m, the map
X:Q—=FE Xw)=(X(w),Xs(w),...)
is measurable and the image measure I' = Py is the unique measure o(C) satisfying
DI A,) = T % m(A,).

Definition 12.7. The product space (E = RN, ¢(C),T) is called the canonical model
associated to the sequence of iid X (n)p>0.

Lemma 12.8. The shit map
0:F—E, 0x1,x9,...)=(x2,23,...)
1s I'-measure preserving and ergodic.
By applying Von Neuman to
fE—=R, f(x)=u1,
we obtain the L' version of the strong law of large numbers.

Theorem 12.9 (Strong Law of Large Numbers, L' version). Let (X,,),>1 be real
valued independent r.v with same law and E[|X1|] < +oo, then

E[X1+---+Xn

- — E[X1]

n—oo

| o
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