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1. Consider classifying an observation of a random vector X in Rp into either a N(µ1,Σ) or
a N(µ2,Σ) population, where Σ is a known nonsingular covariance matrix and µ1 6= µ2 are two
distinct known mean vectors.

(a) For a prior π assigning probability q to µ1 and 1− q to µ2, show that the Bayes classifier
is unique and assigns X to N(µ1,Σ) whenever

U ≡ D − 1

2
(µ1 + µ2)TΣ−1(µ1 − µ2)

exceeds log((1− q)/q), where D = XTΣ−1(µ1 − µ2) is the discriminant function.
(b) Show that U ∼ N(∆2/2,∆2) whenever X ∼ N(µ1,Σ), and U ∼ N(−∆2/2,∆2) whenever

X ∼ N(µ2,Σ), where ∆ is the Mahalanobis distance between µ1 and µ2, given by

∆2 = (µ1 − µ2)TΣ−1(µ1 − µ2).

(c) Show that a minimax classifier is obtained from selecting N(µ1,Σ) whenever U ≥ 0.

2. Consider classifying an observation X into a population described by a probability density
equal to either f1 or f2. Assume Pfi(f1(X)/f2(X) = k) = 0 for all k ∈ [0,∞], where i ∈ {1, 2}.
Show that any admissible classification rule is a Bayes classification rule for some prior π.

3. For F : R → [0, 1] a probability distribution function, define its generalized inverse
F−(u) = inf{x : F (x) ≥ u}, for u ∈ [0, 1]. If U is a uniform U [0, 1] random variable, show that
the random variable F−(U) has distribution function F .

4. Let f, g : R → [0,∞) be bounded probability density functions such that f(x) ≤ Mg(x)
for all x ∈ R and some constant M > 0. Suppose you can simulate a random variable X of
density g, as well as a random variable U from a uniform U [0, 1] distribution. Consider the
following “accept-reject” algorithm:

Step 1. Draw X ∼ g and U ∼ U [0, 1].
Step 2. Accept Y = X if U ≤ f(X)/(Mg(X)), and return to Step 1 otherwise.

Show that Y has density f .

5. Let U1 and U2 be i.i.d. uniform U [0, 1], and define

X1 =
√
−2 log(U1) cos(2πU2), and X2 =

√
−2 log(U1) sin(2πU2).

Show that X1, X2 are i.i.d. N(0, 1).

6. Consider observations X1, . . . , Xn from a statistical model {f(·, θ) : θ ∈ Θ}, where Θ = Rp
and p ∈ N, and denote by π(·|X1, . . . , Xn) the posterior distribution arising from a N(0, Ip) prior
π on Θ. Suppose the Markov chain (ϑm : m ∈ N) is started at an arbitrary value ϑ0 ∈ Rp and
evolves as follows:

Step 1. For m ∈ N ∪ {0} and δ > 0, and given ϑm, generate ξ ∼ π = N(0, Ip) and

set

sm =
√

1− 2δϑm +
√

2δξ.
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Step 2. Define

ϑm+1 =

{
sm, with probability ρ(ϑm, sm)

ϑm, with probability 1− ρ(ϑm, sm),

where the acceptance probabilities are given by

ρ(ϑm, sm) = min
{
e`(sm)−`(ϑm), 1

}
, `(θ) =

n∑
i=1

log f(Xi, θ).

Step 3. Repeat the above with m 7→ m+ 1.

Show that the posterior distribution π(·|X1, . . . , Xn) is an invariant measure for (ϑm : m ∈ N).

7. Let X1, . . . , Xn be i.i.d. random variables drawn from a distribution P with unknown mean
µ and variance σ2. Write X̄n = 1

n

∑n
i=1Xi for the sample mean, and let X̄b

n = (1/n)
∑n
i=1X

b
ni be

the mean of a bootstrap sample (Xb
ni : i = 1, . . . , n) ∼i.i.d. Pn generated from the Xi’s. Choosing

roots Rn such that

Pn
(
X̄b
n − X̄n ≤

Rn√
n

)
= 1− α

for some 0 < α < 1, let

Cbn =

{
v ∈ R : X̄n − v ≤

Rn√
n

}
be the corresponding one-sided bootstrap confidence interval. Show that Rn converges to a
constant in PN-probability, and deduce further that Cbn is an exact asymptotic level 1 − α
confidence set, i.e., as n→∞,

PN(µ ∈ Cbn)→ 1− α.

8. Let X1, . . . , Xn be drawn i.i.d. from a continuous distribution function F : R→ [0, 1], and
let Fn(t) = (1/n)

∑n
i=1 1(−∞,t](Xi) be the empirical distribution function. Use the Kolmogorov-

Smirnov theorem to construct a confidence band for the unknown function F of the form

{Cn(x) = [Fn(x)−Rn, Fn(x) +Rn] : x ∈ R}

that satisfies PN
F (F (x) ∈ Cn(x) ∀x ∈ R) → 1 − α as n → ∞, and where Rn = R/

√
n for some

fixed quantile constant R > 0.

9. Given X1, . . . , Xn from a regular statistical model {f(·, θ) : θ ∈ Θ}, where Θ = Rp, with
non-singular Fisher information I(θ), consider “local” perturbations θ0 + (h/

√
n), with h ∈ Rp,

of the log-likelihood ratios near a “true” value θ0. More precisely, define

Zn(h) = log

∏n
i=1 f(Xi, θ0 + h/

√
n)∏n

i=1 f(Xi, θ0)
, Xi ∼i.i.d. f(·, θ0).

Next, consider a normal shift experiment given by the probability density functions (ph : h ∈ Rp)
of normal distributions N(h, I(θ0)−1), and denote the corresponding likelihood ratios by

Z(h) = log
ph(X)

p0(X)
, X ∼ p0.

Show that for every fixed h ∈ Rp, the random variables Zn(h) converge in distribution under Pθ0
to the law of Z(h), as n → ∞. [This suggests that at least in 1/

√
n-neighborhoods of θ0, the

likelihood ratio process of any regular statistical model behaves like the one of a simple Gaussian
shift experiment with mean h and covariance I(θ0)−1.]
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