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Part II, Michaelmas 2023, Po-Ling Loh (email: pll28@cam.ac.uk)
Questions by courtesy of Richard Nickl

1. Cousider classifying an observation of a random vector X in RP into either a N(u,X) or
a N(p2,X) population, where ¥ is a known nonsingular covariance matrix and gy # ug are two
distinct known mean vectors.

(a) For a prior 7 assigning probability ¢ to p; and 1 — g to ps, show that the Bayes classifier
is unique and assigns X to N(p1,X) whenever

1
U=D = 5(m+p)" S (i1 — o)

exceeds log((1 — q)/q), where D = X771 (u; — us) is the discriminant function.
(b) Show that U ~ N(A?/2, A?) whenever X ~ N(u,¥), and U ~ N(—A2/2, A?) whenever
X ~ N(us2,%), where A is the Mahalanobis distance between 1 and pe, given by

A% = (1 — p2) S — pa).

(c) Show that a minimax classifier is obtained from selecting N (1, %) whenever U > 0.

2. Consider classifying an observation X into a population described by a probability density
equal to either fi or fo. Assume Py, (f1(X)/f2(X) = k) =0 for all k € [0, 00|, where ¢ € {1,2}.
Show that any admissible classification rule is a Bayes classification rule for some prior 7.

3. For F : R — [0,1] a probability distribution function, define its generalized inverse
F~(u) = inf{z : F(x) > u}, for v € [0,1]. If U is a uniform UJ0, 1] random variable, show that
the random variable '~ (U) has distribution function F'.

4. Let f,g: R — [0,00) be bounded probability density functions such that f(z) < Mg(x)
for all x € R and some constant M > 0. Suppose you can simulate a random variable X of
density g, as well as a random variable U from a uniform U[0, 1] distribution. Consider the
following “accept-reject” algorithm:

Step 1. Draw X ~g and U ~ UJ0,1].

Step 2. Accept Y =X if U < f(X)/(Mg(X)), and return to Step 1 otherwise.
Show that Y has density f.

5. Let Uy and Us be i.i.d. uniform U[0, 1], and define

X1 = v/—2log(Uy) cos(2nU3), and X5 = v/ —2log(U;) sin(27U3).

Show that X7, X5 are i.i.d. N(0,1).

6. Consider observations X1, ..., X, from a statistical model {f(-,0) : § € ©}, where © = R?
and p € N, and denote by 7(:| X1, ..., X,,) the posterior distribution arising from a N (0, I,) prior
7w on ©. Suppose the Markov chain (¢, : m € N) is started at an arbitrary value ¥y € RP and
evolves as follows:

Step 1. For m e NU{0} and 6 >0, and given ¥,,, generate { ~m = N(0,I,) and

set
Sm = V1 — 260,, + V26¢.



Step 2. Define
9 ESY with probability p(dn,,Sm)
m s with probability 1 — p(Jpm,Sm),

where the acceptance probabilities are given by

p(Im, $m) = min {70 11 0(0) = "log f(X;,0).
i=1
Step 3. Repeat the above with m—m+1.

Show that the posterior distribution 7 (-|X1,...,X,,) is an invariant measure for (9, : m € N).

7. Let X1,..., X, beii.d. random variables drawn from a distribution P with unknown mean
1 and variance o2. Write X,, = 2 > | X; for the sample mean, and let X} = (1/n) Y7, X}, be
the mean of a bootstrap sample (Xf’”- ci=1,...,n) ~""% P, generated from the X;’s. Choosing
roots R,, such that

Pn<xg_xngm):1_a

for some 0 < a < 1, let

v R7l
CZ:{’UGRZX”—’US\F}

be the corresponding one-sided bootstrap confidence interval. Show that R, converges to a
constant in PN-probability, and deduce further that C® is an exact asymptotic level 1 — «
confidence set, i.e., as n — 00,

PYuect) —-1-a.

8. Let X,..., X, be drawn i.i.d. from a continuous distribution function F' : R — [0, 1], and
let Fio(t) = (1/n) 371 1(—00,y(Xi) be the empirical distribution function. Use the Kolmogorov-
Smirnov theorem to construct a confidence band for the unknown function F' of the form

{Ch(z) = [Fp(x) — Ry, Fr(z) + Ry) : x € R}
that satisfies PY(F(z) € Cp(z) Vx € R) = 1 — a as n — oo, and where R,, = R/\/n for some
fixed quantile constant R > 0.

9. Given Xi,..., X, from a regular statistical model {f(-,0) : @ € ©}, where © = RP, with
non-singular Fisher information I(6), consider “local” perturbations 6y + (h/y/n), with h € R?,
of the log-likelihood ratios near a “true” value 6y. More precisely, define

[T, f(Xi, 00+ h/\/n)
T2, f(Xs,60)

Next, consider a normal shift experiment given by the probability density functions (py, : h € RP)
of normal distributions N (h, I(6p)~1), and denote the corresponding likelihood ratios by

pr(X)
po(X)’

Zn(h) = log X~ (L 6).

Z(h) =log X ~ pg.

Show that for every fixed h € RP, the random variables Z,,(h) converge in distribution under Py,
to the law of Z(h), as n — oo. [This suggests that at least in 1/y/n-neighborhoods of 6y, the
likelihood ratio process of any regular statistical model behaves like the one of a simple Gaussian
shift experiment with mean h and covariance I(fy)~".]



