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Lecturer: Quentin Berthet

Here, unless specified otherwise, θ is assumed to be a fixed element of the parameter
space Θ ⊂ Rp. By a ‘regular parametric model’ we mean a statistical model of probabil-
ity density/mass functions {f(·, θ) : θ ∈ Θ} that satisfies the regularity conditions from
lectures, ensuring asymptotic normality of the maximum likelihood estimator (which
in turn may be used without proof in the solution of the respective exercise).

1. Let Θ ⊆ R have nonempty interior and let Sn be a sequence of random real-valued
continuous functions defined on Θ such that, as n→∞, Sn(θ)→P S(θ) ∀θ ∈ Θ, where
S : Θ → R is nonrandom. Suppose for some θ0 in the interior of Θ and every ε > 0
small enough we have S(θ0 − ε) < 0 < S(θ0 + ε), and that Sn has exactly one zero θ̂n
for every n ∈ N. Deduce that θ̂n →P θ0 as n→∞.

2. Give an example of (possibly random) functions Qn, Q defined on Θ ⊂ R that
have unique maximisers θ̂n, θ0, respectively, such Qn(θ) → Q(θ) (almost surely) for
every θ ∈ Θ as n→∞, but θ̂n 6→ θ0 (almost surely).

3. Consider an i.i.d. sample X1, . . . , Xn arising from the model{
f(x, θ) = θxθ−1 exp{−xθ}, x > 0, θ ∈ (0,∞)

}
of Weibull distributions. Show that the MLE exists and is consistent.

4. Consider the maximum likelihood estimator θ̂ from X1, . . . , Xn i.i.d. N (θ, 1) where
θ ∈ Θ = [0,∞). Show that

√
n(θ̂ − θ) is asymptotically normal whenever θ > 0. What

happens when θ = 0? Comment on your findings in light of the general asypmtotic
theory for maximum likelihood estimators.

5. Let X1, . . . , Xn be i.i.d. random variables from a uniform U(0, θ), θ ∈ Θ = (0,∞)
distribution. Calculate the Fisher information for this model. Find the maximum like-
lihood estimator θ̂ of θ and show that θ̃n = n+1

n
θ̂ is unbiased for θ. Find the variance of

θ̃n, compare it to what the Cramèr-Rao inequality predicts, and discuss your findings.
Finally find the asymptotic distribution of n(θ̂ − θ).

6. Suppose one is given a regular parametric model {f(·, θ) : θ ∈ Θ} with likelihood
function L(θ) and corresponding maximum likelihood estimator θ̂MLE, and consider a
mapping Φ : Θ→ F , where Θ, F are subsets of R.
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a) Assuming that Φ is one to one, show that the maximum likelihood estimator of φ
in the model {f(·, φ) : φ = Φ(θ) for some θ ∈ Θ} equals Φ(θ̂MLE).

b) Now consider a mapping Φ that is not necessarily one-to-one. Define the induced
likelihood function L∗(φ) = supθ:Φ(θ)=φ L(θ) and show that Φ(θ̂MLE) is a maximum

likelihood estimator of φ (that is, show that Φ(θ̂MLE) maximises L∗(φ)).

c) Based on n repeated observations of a random variable X from one of the following
parametric models, find the maximum likelihood estimator of the parameter φ: i) φ =
V ar(X) in a Poisson-θ model. ii) φ = V ar(X) in a Bernoulli-p-model, iii) φ = (EX)2

in a N (µ, σ2) model. Which of these MLEs are unique?

7. Consider the parameter φ = E[X4] equal to the fourth moment of a N (0, θ)
distribution. Find the MLE φ̂ of φ and derive the asymptotic distribution of

√
n(φ̂−φ)

as n → ∞. Conjecture a corresponding result for higher moments φm = E[Xm] where
m > 4 is an even integer.

8. In a regular parametric model with parameter space Θ ⊂ Rd, let θ̂ be the maximum
likelihood estimator arising from an i.i.d. sample X1, . . . , Xn. Derive the asymptotic
distribution of

Wn = n(θ̂ − θ)T in(θ̂ − θ)
under Pθ, where in equals either in(θ) or in(θ̂n) and where in(θ) is the observed Fisher
information matrix at θ. Deduce from this limiting result i) a test for the hypothesis
H0 : θ = θ0 vs. H1 : θ 6= θ0 that has type-one-errors of level at most α and ii) that the
confidence ellipsoid

Cn = {θ ∈ Rd : (θ̂ − θ)T in(θ̂)(θ̂ − θ) ≤ zα/n}

has asymptotic coverage level 1 − α for zα the 1 − α-quantile constants of the limit
distribution derived above.

9. Consider the parametric models from Exercise on Sheet 1 with corresponding
parameter space Θ. For all these models, derive explicit expressions for the likelihood
ratio test statistic of a simple hypothesis H0 : θ = θ0, θ0 ∈ Θ vs. H1 : θ ∈ Θ, and deduce
the corresponding test statistics.

10. For σ2 a fixed positive constant, consider X1, . . . , Xn|θ ∼i.i.d N (θ, σ2) with prior
distribution θ ∼ N (µ, v2), µ ∈ R, v2 > 0. Show that the posterior distribution of θ given
the observations is

θ|X1, . . . , Xn ∼ N

(
nX̄
σ2 + µ

v2

n
σ2 + 1

v2

,
1

n
σ2 + 1

v2

)
, where X̄ =

1

n

n∑
i=1

Xi.

11. Consider X1, . . . , Xn|µ, σ2 i.i.d. N (µ, σ2) with improper prior density π(µ, σ)
proportional to σ−2 (constant in µ). Argue that the resulting ‘posterior distribution’
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has a density proportional to

σ−(n+2) exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
,

and that the distribution of µ|σ2, X1, . . . , Xn is N (X̄, σ2/n), where X̄ = (1/n)
∑n

i=1Xi.
For 0 < α < 1 and assuming σ2 is known, construct a level 1 − α credible set for the
posterior distribution µ|σ2, X1, . . . , Xn that is also an exact level 1 − α (frequentist)
confidence set.

12. Consider the maximum likelihood estimator θ̂n of a sample of size n from a
N (θ, 1) model, θ ∈ R. Define the (‘Hodges’-) estimator

θ̃n = θ̂n1|θ̂n|≥n−1/4 .

Show that, under Pθ, θ 6= 0, one has
√
n(θ̃n− θ)→d N (0, 1), but that θ̃ is superefficient

at θ = 0, that is, under Pθ, θ = 0, one has
√
n(θ̃n − 0)→d N (0, 0), improving upon the

maximum likelihood estimator.


