Principles of Statistics Part II - Michaelmas 2018

Example Sheet 2
Lecturer: Quentin Berthet

Here, unless specified otherwise, 6 is assumed to be a fixed element of the parameter
space © C RP. By a ‘regular parametric model” we mean a statistical model of probabil-
ity density/mass functions {f(-,0) : @ € O} that satisfies the regularity conditions from
lectures, ensuring asymptotic normality of the maximum likelihood estimator (which
in turn may be used without proof in the solution of the respective exercise).

1. Let © C R have nonempty interior and let S,, be a sequence of random real-valued
continuous functions defined on © such that, as n — oo, S, (0) = S() V0 € ©, where
S : ©® — R is nonrandom. Suppose for some 6, in the interior of © and every ¢ > 0
small enough we have S(6) —¢) < 0 < S(0y + ¢), and that S,, has exactly one zero 6,
for every n € N. Deduce that 9n —P 0y as n — 0.

2. Give an example of A(possibly random) functions @, Q) defined on ® C R that

have unique maximisers 6,0y, respectively, such @,(f) — Q(¢) (almost surely) for
every 6 € © as n — oo, but 6, 4 0y (almost surely).

3. Consider an i.i.d. sample Xy, ..., X, arising from the model
{f(z,0) =02 " exp{—2a’},2 > 0,0 € (0,00)}
of Weibull distributions. Show that the MLE exists and is consistent.

4. Consider the maximum likelihood estimator 6 from X, ..., X,, i.i.d. N(0,1) where
0 € © =[0,00). Show that \/n(f — ) is asymptotically normal whenever 6 > 0. What
happens when § = 0?7 Comment on your findings in light of the general asypmtotic
theory for maximum likelihood estimators.

5. Let X1,...,X, be i.i.d. random variables from a uniform U(0,6),0 € © = (0, 00)
distribution. Calcplate the Fisher inforgnation f9r this model. Find the maximum like-
lihood estimator @ of 6 and show that 6,, = "7“9 is unbiased for 0. Find the variance of

O, compare it to what the Cramer-Rao inequality predicts, and discuss your findings.
Finally find the asymptotic distribution of n(6 — ).

6. Suppose one is given a regular parametric model {f(-,0) : 0 € ©} with likelihood
function L(#) and corresponding maximum likelihood estimator 0,1z, and consider a
mapping ® : © — F', where O, I’ are subsets of R.
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a) Assuming that ® is one to one, show that the maximum likelihood estimator of ¢
in the model {f(-,¢) : ¢ = ®(0) for some 6 € O} equals (Or1).

b) Now consider a mapping ® that is not necessarily one-to-one. Define the induced
likelihood function L*(¢) = supp.qg)— L(0) and show that ®(0yrp) is a maximum

likelihood estimator of ¢ (that is, show that ®(fy;5) maximises L*(¢)).

c¢) Based on n repeated observations of a random variable X from one of the following
parametric models, find the maximum likelihood estimator of the parameter ¢: i) ¢ =
Var(X) in a Poisson-0 model. ii) ¢ = Var(X) in a Bernoulli-p-model, iii) ¢ = (EX)?
in a N (i, 0?) model. Which of these MLEs are unique?

7. Consider the parameter ¢ = E[X?] equal to the fourth moment of a A(0,6)
distribution. Find the MLE 6 of ¢ and derive the asymptotic distribution of \/ﬁ(é — )
as n — 00. Conjecture a corresponding result for higher moments ¢, = E[X™] where
m > 4 is an even integer.

8. In a regular parametric model with parameter space © C R?, let 6 be the maximum
likelihood estimator arising from an i.i.d. sample Xi,...,X,. Derive the asymptotic
distribution of

W, =n(0—0)7i,(0 —0)

~

under Py, where i,, equals either i,(0) or i,(6,) and where i,(0) is the observed Fisher
information matrix at #. Deduce from this limiting result i) a test for the hypothesis
Hy: 0 =0y vs. Hy : 0 # 0, that has type-one-errors of level at most a and ii) that the
confidence ellipsoid

Co={0eR: (0—0)Ti,(0)(0 — 0) < zo/n}

has asymptotic coverage level 1 — a for z, the 1 — a-quantile constants of the limit
distribution derived above.

9. Consider the parametric models from Exercise on Sheet 1 with corresponding
parameter space O. For all these models, derive explicit expressions for the likelihood
ratio test statistic of a simple hypothesis Hy : 0 = 6y, 0y € © vs. Hy : 0 € O, and deduce
the corresponding test statistics.

10. For o2 a fixed positive constant, consider X1, ..., X, |0 ~**¢ N'(0,0%) with prior
distribution 6§ ~ A (u,v?), u € R, v? > 0. Show that the posterior distribution of  given
the observations is

- S
01Xy,... . Xy~ N|2—2 — |, where X == X,
i s S i [t

11. Consider Xi,..., X,|u,0? iid. N(u, o) with improper prior density w(u,o)
proportional to o2 (constant in u). Argue that the resulting ‘posterior distribution’



has a density proportional to

1 n
—(n+2) o o 2
o eXp{ 5,2 > (X — ) }

=1

and that the distribution of u|o?, X1, ..., X, is N(X,0?/n), where X = (1/n)>_" | X.
For 0 < o < 1 and assuming o? is known, construct a level 1 — « credible set for the
posterior distribution pu|o?, X;,..., X, that is also an exact level 1 — « (frequentist)
confidence set.

12. Consider the maximum likelihood estimator 6, of a sample of size n from a
N(6,1) model, 6 € R. Define the (‘Hodges’-) estimator

9n — 9n1|én‘2n,1/4

Show that, under Py, 6 # 0, one has v/n(f, — 0) =% N(0,1), but that 6 is superefficient
at 6 = 0, that is, under Py, = 0, one has /n(6, — 0) —¢ N(0,0), improving upon the
maximum likelihood estimator.



