

Number Fields Examples

Michaelmas Term 2002

Sheet 3

1. For which primes p is the equation $x^2 + 13y^2 = p$ soluble in integers x, y ?
2. Establish the following facts about the factorisation of principal ideals in $\mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer.
 - (i) If d is composite and p is an odd prime divisor of d then $[p] = \wp^2$ where \wp is not principal.
 - (ii) If $d \equiv 1$ or $2 \pmod{4}$ then $[2] = \wp^2$ where \wp is not principal unless $d = 1$ or 2 .
 - (iii) If $d \equiv 7 \pmod{8}$ then $[2] = \wp\bar{\wp}$ where \wp is not principal unless $d = 7$.

Hence show that if $\mathbb{Q}(\sqrt{-d})$ has class number 1 then either $d = 1, 2$ or 7 , or d is prime and $d \equiv 3 \pmod{8}$.

3. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for $d = 1, 2, 3, 7, 11, 19, 43, 67, 163$.
[Gauss conjectured that these are the only values and this has now been proved.]
4. (Tripos 94) State Dedekind's theorem on the ideal factorisation of rational primes in fields k with a power integral basis. Briefly outline the proof.
Determine how the primes 2 and 5 factorise in $\mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/5}$.
[It can be assumed that $\mathbb{Q}(\zeta)$ has an integral basis $1, \zeta, \zeta^2, \zeta^3$].
5. (Tripos 96) Define the ideal class group of an algebraic number field k . State a result involving the discriminant of k that implies that the group is finite.
By Dedekind's theorem, or otherwise, factorise the primes 2 and 3 in the field $k = \mathbb{Q}(\sqrt{-23})$. Verify that the ideal equation

$$[2, \omega][3, \omega] = [\omega]$$

holds in k , where $\omega = \frac{1}{2}(1 + \sqrt{-23})$. Hence prove that k has class number 3.

6. (Tripos 98 - adapted) By Dedekind's theorem, or otherwise, factorize the primes 2 and 3 in the field $k = \mathbb{Q}(\sqrt{-17})$. Verify that 5 remains prime in k .
Show that the ideal equation

$$[\omega] = [2, \omega][3, \omega]^2$$

holds in k , where $\omega = 1 + \sqrt{-17}$. Hence prove that the ideal class group of k is cyclic of order 4.

7. (Tripos 99 - adapted) Factorise the ideals $[2]$, $[3]$, and $[5]$ in the ring of algebraic integers of the field $K = \mathbb{Q}(\sqrt{30})$. Using Minkowski's bound, determine the ideal class group of K .
 Find the fundamental unit of K and determine all solutions of the equations $x^2 - 30y^2 = \pm 5$ in integers x, y . Prove that there are in fact no solutions of $x^2 - 30y^2 = 5$.

8. (Tripos 00 - adapted) Let $f(x) = x^5 - x + 1$. Show that the discriminant of f is equal to $2869 = 19 \times 151$. Deduce that the ring of algebraic integers of $K = \mathbb{Q}(\alpha)$, where α is a zero of f , is $\mathcal{O}_K = \mathbb{Z}(\alpha)$. Using Minkowski's bound, determine the ideal class group of K .

9. (Tripos 00/01 - adapted) Using Minkowski's bound, determine the ideal class group of $\mathbb{Q}(\sqrt{-5})$ and $\mathbb{Q}(\sqrt{-11})$. Find all solutions in integers x, y of the diophantine equations

$$y^2 + 5 = x^3, \quad y^2 + 11 = x^3.$$

10. (Tripos 02 - adapted) Let $K = \mathbb{Q}(\sqrt{35})$. By Dedekind's theorem, or otherwise, show that the ideal equations

$$2 = [2, \omega]^2, \quad 5 = [5, \omega]^2, \quad [\omega] = [2, \omega][5, \omega]$$

hold in K , where $\omega = 5 + \sqrt{35}$. Deduce that K has class number 2.

Verify that $1 + \omega$ is the fundamental unit in K . Hence show that the complete solution in integers x, y of the equation $x^2 - 35y^2 = -10$ is given by

$$x + \sqrt{35}y = \pm\omega(1 + \omega)^n \quad (n = 0, \pm 1, \pm 2, \dots).$$

Calculate the particular solution x, y for $n = 1$.

11. (Tripos 92) Factorise $[2]$ in the ring of integers of $\mathbb{Q}(\sqrt{65})$. Show that the primes dividing $[2]$ are not principal. Find the ideal class group of $\mathbb{Q}(\sqrt{65})$.
 Describe all integer solutions of $X^2 - 65Y^2 = 40$.

12. (Tripos 93) Factorise the ideals $[2]$, $[5]$, $[1 + \sqrt{-26}]$ and $[2 + \sqrt{-26}]$ in the ring of integers of $\mathbb{Q}(\sqrt{-26})$. Find the ideal class group of the ring of integers of $\mathbb{Q}(\sqrt{-26})$.

13. (Tripos 94) Factorise the ideals $[2]$, $[3]$ and $[2 + \sqrt{-14}]$ in the ring of integers of $\mathbb{Q}(\sqrt{-14})$. Find the ideal class group of the ring of integers of $\mathbb{Q}(\sqrt{-14})$.

14. Find the class group of $\mathbb{Q}(\alpha)$, where α is

$$\sqrt{-6}, \sqrt{10}, \sqrt{-29}, \sqrt[3]{2}, e^{2\pi i/5}.$$

15. Let $\alpha = e^{2\pi i/7} + e^{-2\pi i/7}$. Show that the minimum polynomial of α is $f(x) = x^3 + x^2 - 2x - 1$. Determine the discriminant of f and the ideal class group of $\mathbb{Q}(\alpha)$.