

Number Fields: Example Sheet 2 of 3

1. Let \mathfrak{a} and \mathfrak{b} be ideals in \mathcal{O}_K . Determine the factorisations into prime ideals of $\mathfrak{a} + \mathfrak{b}$ and $\mathfrak{a} \cap \mathfrak{b}$ in terms of those for \mathfrak{a} and \mathfrak{b} . Show that if $\mathfrak{a} + \mathfrak{b} = \mathcal{O}_K$ then $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$ and there is an isomorphism of rings $\mathcal{O}_K/\mathfrak{a}\mathfrak{b} \cong \mathcal{O}_K/\mathfrak{a} \times \mathcal{O}_K/\mathfrak{b}$.
2. Let $K = \mathbb{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $\mathfrak{p} = (2, 1 + \sqrt{-5})$, $\mathfrak{q}_1 = (7, 3 + \sqrt{-5})$ and $\mathfrak{q}_2 = (7, 3 - \sqrt{-5})$ are prime ideals in \mathcal{O}_K . Which (if any) of the ideals $\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{p}^2, \mathfrak{p}\mathfrak{q}_1, \mathfrak{p}\mathfrak{q}_2$ and $\mathfrak{q}_1\mathfrak{q}_2$ are principal? Factor the principal ideal $(9 + 11\sqrt{-5})$ as a product of prime ideals.
3. Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal, and m the least positive integer in \mathfrak{a} . Prove that m and $N\mathfrak{a}$ have the same prime factors.
4. Let $K = \mathbb{Q}(\sqrt{35})$ and $\omega = 5 + \sqrt{35}$. Verify the ideal equations $(2) = (2, \omega)^2$, $(5) = (5, \omega)^2$ and $(\omega) = (2, \omega)(5, \omega)$. Show that the class group of K contains an element of order 2. Find all ideals of norm dividing 100 and determine which are principal.
5. Let p be an odd prime and $K = \mathbb{Q}(\zeta_p)$ where ζ_p is a primitive p th root of unity. Determine $[K : \mathbb{Q}]$. Calculate $N_{K/\mathbb{Q}}(\pi)$ and $\text{Tr}_{K/\mathbb{Q}}(\pi)$ where $\pi = 1 - \zeta_p$.
 - (i) By considering traces $\text{Tr}_{K/\mathbb{Q}}(\zeta_p^j \alpha)$ show that $\mathbb{Z}[\zeta_p] \subset \mathcal{O}_K \subset \frac{1}{p}\mathbb{Z}[\zeta_p]$.
 - (ii) Show that $(1 - \zeta_p^r)/(1 - \zeta_p^s)$ is a unit for all $r, s \in \mathbb{Z}$ coprime to p , and that $\pi^{p-1} = up$ where u is a unit.
 - (iii) Prove that the natural map $\mathbb{Z} \rightarrow \mathcal{O}_K/(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_K$ and $m \geq 1$ there exist $a_0, \dots, a_{m-1} \in \mathbb{Z}$ such that
$$\alpha \equiv a_0 + a_1\pi + \dots + a_{m-1}\pi^{m-1} \pmod{\pi^m \mathcal{O}_K}.$$
 - (iv) Deduce that $\mathcal{O}_K = \mathbb{Z}[\zeta_p]$.
6. Let $K = \mathbb{Q}(\sqrt{-d})$ where d is a positive square-free integer. Establish the following facts about the factorisation of principal ideals in \mathcal{O}_K .
 - (i) If d is composite and p is an odd prime divisor of d then $(p) = \mathfrak{p}^2$ where \mathfrak{p} is not principal.
 - (ii) If $d \equiv 1$ or $2 \pmod{4}$ then $(2) = \mathfrak{p}^2$ where \mathfrak{p} is not principal unless $d = 1$ or 2 .
 - (iii) If $d \equiv 7 \pmod{8}$ then $(2) = \mathfrak{p}\bar{\mathfrak{p}}$ where \mathfrak{p} is not principal unless $d = 7$.

Deduce that if K has class number 1 then either $d = 1, 2$ or 7 , or d is prime and $d \equiv 3 \pmod{8}$.
7. Let $K = \mathbb{Q}(\sqrt{-m})$ where $m > 0$ is the product of distinct primes p_1, \dots, p_k . Show that $(p_i) = \mathfrak{p}_i^2$ where $\mathfrak{p}_i = (p_i, \sqrt{-m})$. Show that just two of the ideals $\prod \mathfrak{p}_i^{r_i}$ with $r_i \in \{0, 1\}$ are principal. Deduce that the class group Cl_K contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{k-1}$. [If you like, just do the case $m \not\equiv 3 \pmod{4}$.]

8. Let $K = \mathbb{Q}(\theta)$ where θ is a root of $X^3 - 4X + 7$. Determine the ring of integers and discriminant of K . Determine the factorisation into prime ideals of $p\mathcal{O}_K$ for $p = 2, 3, 5, 7, 11$. Find all non-zero ideals \mathfrak{a} of \mathcal{O}_K with $N\mathfrak{a} \leq 11$.

9. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 + X^2 - 2X + 8$. [This polynomial is irreducible over \mathbb{Q} and has discriminant -4×503 .]

- (i) Show that $\beta = 4/\alpha \in \mathcal{O}_K$ and $\beta \notin \mathbb{Z}[\alpha]$. Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$.
- (ii) Show that there is an isomorphism of rings $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$. Deduce that 2 splits completely in K .
- (iii) Use Dedekind's criterion to show that $\mathcal{O}_K \neq \mathbb{Z}[\theta]$ for any θ .

10. (i) Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal. Show that every ideal in the ring $\mathcal{O}_K/\mathfrak{a}$ is principal. [Hint: Use Question 1 to reduce to the case \mathfrak{a} is a prime power.]

(ii) Deduce that every ideal in \mathcal{O}_K can be generated by 2 elements.

11. Show that $\mathbb{Q}(\sqrt{-d})$ has class number 1 for $d = 1, 2, 3, 7, 11, 19, 43, 67, 163$.

And some extra questions, just for fun.

12. For \mathfrak{a} an ideal in \mathcal{O}_K let $\phi(\mathfrak{a}) = |(\mathcal{O}_K/\mathfrak{a})^*|$. Show that $\phi(\mathfrak{a}) = N(\mathfrak{a}) \prod_{\mathfrak{p}|\mathfrak{a}} (1 - \frac{1}{N_{\mathfrak{p}}})$.

13. Prove Stickelberger's criterion, that $D_K \equiv 0, 1 \pmod{4}$. [Hint: Start by writing $D_K = (P - N)^2 = (P + N)^2 - 4PN$ where P is a sum over even permutations and N is a sum over odd permutations. Then show that $P + N, PN \in \mathbb{Z}$.] Hence compute the ring of integers of $\mathbb{Q}[X]/(f(X))$ where $f(X) = X^3 - X + 2$.

14. Let $B_{r,s}(t) = \{(y_1, \dots, y_r, z_1, \dots, z_s) \in \mathbb{R}^r \times \mathbb{C}^s \mid \sum |y_i| + 2 \sum |z_j| \leq t\}$. Show that $\text{vol } B_{r+1,s}(t) = \int_{-t}^t \text{vol } B_{r,s}(t - |y|) dy$, and $\text{vol } B_{r,s+1}(t) = \int \int_{|z| \leq t/2} \text{vol } B_{r,s}(t - 2|z|)$. Hence show by induction that $\text{vol } B_{r,s}(t) = 2^r (\frac{\pi}{2})^s \frac{t^n}{n!}$. [You should do the second integral by choosing polar coordinates, $z = re^{i\theta}$.]