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1. Let a and b be coprime ideals in OK . (This means there are no proper ideals
dividing both a and b.) Show that a + b = OK and a ∩ b = ab. Deduce that there
is an isomorphism of rings OK/ab ∼= OK/a×OK/b.

2. Let K = Q(
√
−5). Show by computing norms, or otherwise, that p = (2, 1+

√
−5),

q1 = (7, 3 +
√
−5) and q2 = (7, 3 −

√
−5) are prime ideals in OK . Which (if any)

of the ideals p, q1, q2, p
2, pq1, pq2 and q1q2 are principal? Factor the principal ideal

(9 + 11
√
−5) as a product of prime ideals.

3. Let K = Q(
√
−m) where m > 0 is the product of distinct primes p1, . . . , pk. Show

that (pi) = p2
i where pi = (pi,

√
−m). When are the ideals

∏
pri

i and
∏

psi
i in the

same ideal class? Deduce that the class group ClK contains a subgroup isomorphic
to (Z/2Z)k−1. [If you like, just do the case m 6≡ 3 (mod 4).]

4. Let p be an odd prime and K = Q(ζp) where ζp is a primitive pth root of unity.
Determine [K : Q]. Calculate NK/Q(π) and TrK/Q(π) where π = 1− ζp.

(i) By considering traces TrK/Q(ζj
pα) show that Z[ζp] ⊂ OK ⊂ 1

p
Z[ζp].

(ii) Show that (1 − ζr
p)/(1 − ζs

p) is a unit for all r, s ∈ Z coprime to p, and that

πp−1 = up where u is a unit.

(iii) Prove that the natural map Z → OK/(π) is surjective. Deduce that for any
α ∈ OK and m ≥ 1 there exist a0, . . . , am−1 ∈ Z such that

α ≡ a0 + a1π + . . . + am−1π
m−1 (mod πmOK).

(iv) Deduce that OK = Z[ζp].

5. Let K = Q(
√

35) and ω = 5 +
√

35. Verify the ideal equations (2) = (2, ω)2, (5) =
(5, ω)2 and (ω) = (2, ω)(5, ω). Show that 1 + ω is a fundamental unit in K. Hence
show that the complete solution in integers x, y of the equation x2− 35y2 = −10 is
given by x +

√
35y = ±ω(1 + ω)n for n ∈ Z.

6. (i) Find the fundamental unit in Q(
√

7). Determine all the integer solutions of the
equations x2 − 7y2 = m for m = 2, 9 and 13.

(ii) Find the fundamental unit in Q(
√

10). Determine all the integer solutions of
the equations x2 − 10y2 = m for m = −1, 6 and 7.

7. Let K be a number field of degree n, with integral basis 1, α, . . . , αn−1. Let p be a
prime. Let f(X) ∈ Z[X] be the minimal polynomial of α and f(X) ∈ Fp[X] the
polynomial we get by reducing the coefficients mod p.

(i) Show that Z[X]/(f(X)) ∼= OK and OK/pOK
∼= Fp[X]/(f(X)).

(ii) Deduce that pOK is a prime ideal if and only if f(X) is irreducible in Fp[X].

[This is a special case of Dedekind’s criterion (covered later in the course).]
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8. Prove that if x ∈ K is integral over OK (i.e. x is a root of a monic polynomial with
coefficients in OK) then x ∈ OK .

9. Let K = Q(α) where α is a root of f(X) = X3 + X2 − 2X + 8. [This polynomial
is irreducible over Q and has discriminant −4.503.]

(i) Show that β = 4/α ∈ OK and β 6∈ Z[α]. Deduce that OK = Z[α, β].

(ii) Show that there is an isomorphism of rings OK/2OK
∼= F2 × F2 × F2. Deduce

that 2 splits completely in K.

10. (i) Let a ⊂ OK be a non-zero ideal. Show that every ideal in the ring OK/a is
principal. [Hint: Use Question 1 to reduce to the case a is a prime power.]

(ii) Deduce that every ideal in OK can be generated by 2 elements.

11. Let K = Q(α) where α is a root of f(X) = X3−7X−1. [Note that disc(f) = 5.269
is square-free.] Compute NK/Q(n + α) for |n| ≤ 3. Hence show that (5) = p2

1p2

and (7) = q1q2q3 where the pi and qj are distinct primes. Find units generating a
subgroup of O∗

K of finite index. [Hint: You can show that the units you have found
are independent by considering their images in OK/7OK

∼= F7 × F7 × F7.]

The following extra questions may or may not be harder than the earlier questions.

12. Let K be a number field of degree n, and a ⊂ OK an ideal. Show that there is
a basis x1, . . . , xn for K over Q such that x1 ∈ Z and a = {

∑n
i=1 λixi : λi ∈ Z}.

Prove that x1 and Na have the same prime factors.

13. An order in a degree n number field K is a subring R ⊂ K with R ∼= Zn (as groups
under addition). Prove that Z+mOK ⊂ R ⊂ OK for some integer m ≥ 1, and that
R∗ has finite index in O∗

K .

14. For a an ideal in OK let φ(a) = |(OK/a)∗|. Show that φ(a) = N(a)
∏

p|a(1−
1

Np
).

15. Show that there are no integer solutions to x2 − 82y2 = ±2.

16. Prove Stickelberger’s criterion, that DK ≡ 0, 1 (mod 4). [Hint: Suppose first that
K/Q is Galois. Write DK = (P − N)2 = (P + N)2 − 4PN where P is a sum
over even permutations and N is a sum over odd permutations. Then show that
P + N, PN ∈ Z. For the general case, embed K in a Galois closure L/Q.]
Hence compute the ring of integers of Q[X]/(f(X)) where f(X) = X3 −X + 2.
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