

Number Fields: Example Sheet 2 of 3

1. Let \mathfrak{a} and \mathfrak{b} be coprime ideals in \mathcal{O}_K . (This means there are no proper ideals dividing both \mathfrak{a} and \mathfrak{b} .) Show that $\mathfrak{a} + \mathfrak{b} = \mathcal{O}_K$ and $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$. Deduce that there is an isomorphism of rings $\mathcal{O}_K/\mathfrak{a}\mathfrak{b} \cong \mathcal{O}_K/\mathfrak{a} \times \mathcal{O}_K/\mathfrak{b}$.
2. Let $K = \mathbb{Q}(\sqrt{-5})$. Show by computing norms, or otherwise, that $\mathfrak{p} = (2, 1 + \sqrt{-5})$, $\mathfrak{q}_1 = (7, 3 + \sqrt{-5})$ and $\mathfrak{q}_2 = (7, 3 - \sqrt{-5})$ are prime ideals in \mathcal{O}_K . Which (if any) of the ideals $\mathfrak{p}, \mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{p}^2, \mathfrak{p}\mathfrak{q}_1, \mathfrak{p}\mathfrak{q}_2$ and $\mathfrak{q}_1\mathfrak{q}_2$ are principal? Factor the principal ideal $(9 + 11\sqrt{-5})$ as a product of prime ideals.
3. Let $K = \mathbb{Q}(\sqrt{-m})$ where $m > 0$ is the product of distinct primes p_1, \dots, p_k . Show that $(p_i) = \mathfrak{p}_i^2$ where $\mathfrak{p}_i = (p_i, \sqrt{-m})$. When are the ideals $\prod \mathfrak{p}_i^{r_i}$ and $\prod \mathfrak{p}_i^{s_i}$ in the same ideal class? Deduce that the class group Cl_K contains a subgroup isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{k-1}$. [If you like, just do the case $m \not\equiv 3 \pmod{4}$.]
4. Let p be an odd prime and $K = \mathbb{Q}(\zeta_p)$ where ζ_p is a primitive p th root of unity. Determine $[K : \mathbb{Q}]$. Calculate $N_{K/\mathbb{Q}}(\pi)$ and $\text{Tr}_{K/\mathbb{Q}}(\pi)$ where $\pi = 1 - \zeta_p$.
 - (i) By considering traces $\text{Tr}_{K/\mathbb{Q}}(\zeta_p^j \alpha)$ show that $\mathbb{Z}[\zeta_p] \subset \mathcal{O}_K \subset \frac{1}{p}\mathbb{Z}[\zeta_p]$.
 - (ii) Show that $(1 - \zeta_p^r)/(1 - \zeta_p^s)$ is a unit for all $r, s \in \mathbb{Z}$ coprime to p , and that $\pi^{p-1} = up$ where u is a unit.
 - (iii) Prove that the natural map $\mathbb{Z} \rightarrow \mathcal{O}_K/(\pi)$ is surjective. Deduce that for any $\alpha \in \mathcal{O}_K$ and $m \geq 1$ there exist $a_0, \dots, a_{m-1} \in \mathbb{Z}$ such that
$$\alpha \equiv a_0 + a_1\pi + \dots + a_{m-1}\pi^{m-1} \pmod{\pi^m \mathcal{O}_K}.$$
 - (iv) Deduce that $\mathcal{O}_K = \mathbb{Z}[\zeta_p]$.
5. Let $K = \mathbb{Q}(\sqrt{35})$ and $\omega = 5 + \sqrt{35}$. Verify the ideal equations $(2) = (2, \omega)^2$, $(5) = (5, \omega)^2$ and $(\omega) = (2, \omega)(5, \omega)$. Show that $1 + \omega$ is a fundamental unit in K . Hence show that the complete solution in integers x, y of the equation $x^2 - 35y^2 = -10$ is given by $x + \sqrt{35}y = \pm\omega(1 + \omega)^n$ for $n \in \mathbb{Z}$.
6. (i) Find the fundamental unit in $\mathbb{Q}(\sqrt{7})$. Determine all the integer solutions of the equations $x^2 - 7y^2 = m$ for $m = 2, 9$ and 13 .
(ii) Find the fundamental unit in $\mathbb{Q}(\sqrt{10})$. Determine all the integer solutions of the equations $x^2 - 10y^2 = m$ for $m = -1, 6$ and 7 .
7. Let K be a number field of degree n , with integral basis $1, \alpha, \dots, \alpha^{n-1}$. Let p be a prime. Let $f(X) \in \mathbb{Z}[X]$ be the minimal polynomial of α and $\bar{f}(X) \in \mathbb{F}_p[X]$ the polynomial we get by reducing the coefficients mod p .
 - (i) Show that $\mathbb{Z}[X]/(f(X)) \cong \mathcal{O}_K$ and $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_p[X]/(\bar{f}(X))$.
 - (ii) Deduce that $p\mathcal{O}_K$ is a prime ideal if and only if $\bar{f}(X)$ is irreducible in $\mathbb{F}_p[X]$.

[This is a special case of Dedekind's criterion (covered later in the course).]

8. Prove that if $x \in K$ is integral over \mathcal{O}_K (i.e. x is a root of a monic polynomial with coefficients in \mathcal{O}_K) then $x \in \mathcal{O}_K$.
9. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 + X^2 - 2X + 8$. [This polynomial is irreducible over \mathbb{Q} and has discriminant -4.503 .]
 - (i) Show that $\beta = 4/\alpha \in \mathcal{O}_K$ and $\beta \notin \mathbb{Z}[\alpha]$. Deduce that $\mathcal{O}_K = \mathbb{Z}[\alpha, \beta]$.
 - (ii) Show that there is an isomorphism of rings $\mathcal{O}_K/2\mathcal{O}_K \cong \mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2$. Deduce that 2 splits completely in K .
10. (i) Let $\mathfrak{a} \subset \mathcal{O}_K$ be a non-zero ideal. Show that every ideal in the ring $\mathcal{O}_K/\mathfrak{a}$ is principal. [Hint: Use Question 1 to reduce to the case \mathfrak{a} is a prime power.]
- (ii) Deduce that every ideal in \mathcal{O}_K can be generated by 2 elements.
11. Let $K = \mathbb{Q}(\alpha)$ where α is a root of $f(X) = X^3 - 7X - 1$. [Note that $\text{disc}(f) = 5.269$ is square-free.] Compute $N_{K/\mathbb{Q}}(n + \alpha)$ for $|n| \leq 3$. Hence show that $(5) = \mathfrak{p}_1^2\mathfrak{p}_2$ and $(7) = \mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3$ where the \mathfrak{p}_i and \mathfrak{q}_j are distinct primes. Find units generating a subgroup of \mathcal{O}_K^* of finite index. [Hint: You can show that the units you have found are independent by considering their images in $\mathcal{O}_K/7\mathcal{O}_K \cong \mathbb{F}_7 \times \mathbb{F}_7 \times \mathbb{F}_7$.]

The following extra questions may or may not be harder than the earlier questions.

12. Let K be a number field of degree n , and $\mathfrak{a} \subset \mathcal{O}_K$ an ideal. Show that there is a basis x_1, \dots, x_n for K over \mathbb{Q} such that $x_1 \in \mathbb{Z}$ and $\mathfrak{a} = \{\sum_{i=1}^n \lambda_i x_i : \lambda_i \in \mathbb{Z}\}$. Prove that x_1 and $N\mathfrak{a}$ have the same prime factors.
13. An *order* in a degree n number field K is a subring $R \subset K$ with $R \cong \mathbb{Z}^n$ (as groups under addition). Prove that $\mathbb{Z} + m\mathcal{O}_K \subset R \subset \mathcal{O}_K$ for some integer $m \geq 1$, and that R^* has finite index in \mathcal{O}_K^* .
14. For \mathfrak{a} an ideal in \mathcal{O}_K let $\phi(\mathfrak{a}) = |(\mathcal{O}_K/\mathfrak{a})^*|$. Show that $\phi(\mathfrak{a}) = N(\mathfrak{a}) \prod_{\mathfrak{p}|\mathfrak{a}} (1 - \frac{1}{N_{\mathfrak{p}}})$.
15. Show that there are no integer solutions to $x^2 - 82y^2 = \pm 2$.
16. Prove Stickelberger's criterion, that $D_K \equiv 0, 1 \pmod{4}$. [Hint: Suppose first that K/\mathbb{Q} is Galois. Write $D_K = (P - N)^2 = (P + N)^2 - 4PN$ where P is a sum over even permutations and N is a sum over odd permutations. Then show that $P + N, PN \in \mathbb{Z}$. For the general case, embed K in a Galois closure L/\mathbb{Q} .] Hence compute the ring of integers of $\mathbb{Q}[X]/(f(X))$ where $f(X) = X^3 - X + 2$.