NUMBER FIELDS, EXX. SHEET 1

N. I. SHEPHERD-BARRON

- (1*) Which of the following are algebraic integers: $\sqrt{5}$, $\sqrt{5}/\sqrt{2}$, $(1 + \sqrt{5})/2$, $\sqrt{(1 + \sqrt{5})/\sqrt{2}}$, $(1 + \sqrt{3})/2$, $(1 + \sqrt{-3})/2$?
- (2*) Define number field, algebraic number, algebraic integer. Prove that the algebraic integers in a given number field K form a ring \mathcal{O}_K . [Bookwork, but do it anyway.]
- (3*) If K is a number field and $a \in K$, what are the conjugates of a? What are the conjugates of $2^{1/3}$? Explain how to use the conjugates of a to check whether a is an algebraic integer.
- (4*) Define the trace bilinear pairing $T = T_{K/k}$ of a finite field extension K/k, and use it to prove that \mathcal{O}_K is a f.g. \mathbb{Z} -module when K is a number field. [Bookwork, but do it anyway.]
- (5*) Define the discriminant of a subring R of \mathcal{O}_K such that K is the fraction field of R. Show that if $R = \mathbb{Z}[a]$ and f is the minimal polynomial of a, then the discriminant of R equals that of f.

Assuming that D is a square-free integer and is prime to 3, compute a \mathbb{Z} -basis of \mathcal{O}_K when $\theta = D^{1/3}$ and $K = \mathbb{Q}(\theta)$.

[In an exam you would be told to take for granted the useful result that if $x = a + b\theta + c\theta^2$ with $a, b, c \in \mathbb{Q}$, then the elementary symmetric polynomials e_1, e_2, e_3 in x and its conjugates are $e_1 = 3a$, $e_2 = 3a^2 - 3Dbc$, $e_3 = a^3 + Db^3 + D^2c^3 - 3Dabc$.]

- (6*) Suppose that d is a square-free integer, $d \neq 0, 1$. Describe the ring of integers in the quadratic field $K = \mathbb{Q}(\sqrt{d})$ and compute the discriminant D_K of this field. Show that if $f \in \mathbb{Z}[x]$ is a monic quadratic polynomial of discriminant D_K , then $\mathcal{O}_K \equiv \mathbb{Z}[x]/(f)$.
- (7) Suppose that K is a number field of degree n = r + 2s in the usual notation (r is the number of real embeddings of K and s the number of pairs of complex embeddings). Show that the sign of the discriminant D_K is $(-1)^s$.
- (8) Prove Stickelberger's criterion, that $D_K \equiv 0, 1 \pmod{4}$.

¹[Hint: Suppose first that K/\mathbb{Q} is Galois, with group G. If $(x_1,...,x_n)$ is a \mathbb{Z} -basis of \mathcal{O}_K and $\sigma_1,...,\sigma_n$ are the real and complex embeddings of K, then $D_K=\Delta^2$, where $\Delta=\det((\sigma_i(x_j))$. Write $\Delta=P-N$, where P corresponds to the even permutations of n things and N to the odd ones. So $D_K=(P+N)^2-4PN$. Since K/\mathbb{Q} is Galois, the conjugates $\sigma_i(x)$, for any $x\in K$, are exactly the images $g_i(x)$ of x under the various elements g_i of G. Deduce that P+N and PN are G-invariant, so in \mathbb{Q} . Notice that P,N are algebraic integers, so $P+N,PN\in\mathbb{Z}$. For the general case, embed K in a Galois closure L/\mathbb{Q} .

- (9) Show that $f = x^3 x + 2$ is irreducible over \mathbb{Q} and that the ring of integers in $\mathbb{Q}[x]/(f)$ is $\mathbb{Z}[x]/(f)$.
- (10) Suppose that p is an odd prime and that $\zeta = \zeta_p = \exp(2\pi i/p)$. Put $K = \mathbb{Q}(\zeta)$ and $A = \mathbb{Z}[\zeta]$, a subring of \mathcal{O}_K (why?).
 - (i) Write down the minimal polynomial of ζ and the conjugates of ζ .
 - (ii) Show that if r, s are prime to p, then $(\zeta^r 1)/(\zeta^s 1)$ is a unit in A.
- (iii) Show that $\zeta 1$ is a prime element of A and that $(p) = (\zeta 1)^{p-1}$ as principal ideals in A.
- (iv) Deduce that $P = (\zeta^s 1)$ is the only prime ideal of A that lies over p, and that the local ring A_P is a DVR.
 - (v) Show that the discriminant of A is (up to sign) a power of p.
- (vi) Deduce that A_Q is a DVR for all prime ideals Q of A, and that therefore $A = \mathcal{O}_K$.
- (11*) Find factorizations of ideals (in rings of integers \mathcal{O}_K) of the form $(p) = P_1^{e_1}...P_r^{e_r}$ in the following cases:
- $K = \mathbb{Q}(\sqrt{17}), p = 2, 3, 5; K = \mathbb{Q}(\zeta_5), p = 2, 3, 5.$ [That is, find the integers r and the exponents e_i , and the norm of each P_i .]

References

 $E ext{-}mail\ address: nisb@dpmms.cam.ac.uk}$