1. Write down subsets of the reals that have order-types $\omega + \omega$, ω^2 and ω^3.

2. Let α and β be non-zero ordinals. Must we have $\alpha + \beta > \alpha$? Must we have $\alpha + \beta > \beta$?

3. Is there a non-zero ordinal α with $\alpha \omega = \alpha$? What about $\omega \alpha = \alpha$?

4. Show that the inductive and the synthetic definitions of ordinal multiplication coincide.

5. Let α, β, γ be ordinals. Prove that $(\alpha \beta) \gamma = \alpha (\beta \gamma)$.

6. Let α, β, γ be ordinals. Must we have $(\alpha + \beta) \gamma = \alpha \gamma + \beta \gamma$? Must we have $\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$?

7. Let α and β be ordinals with $\alpha \geq \beta$. Show that there is a unique ordinal γ such that $\beta + \gamma = \alpha$. Must there exist an ordinal γ with $\gamma + \beta = \alpha$?

8. An ordinal written as $\omega^{\alpha_1} n_1 + \ldots + \omega^{\alpha_k} n_k$, where $\alpha_1 > \ldots > \alpha_k$ are ordinals (and k and n_1, \ldots, n_k are non-zero natural numbers), is said to be in Cantor Normal Form. Show that every non-zero ordinal has a unique Cantor Normal Form. What is the Cantor Normal Form for the ordinal ϵ_0?

9. Is ω_1 a successor or a limit?

10. Let α be a countable (non-zero) limit ordinal. Prove that there exists an increasing sequence $\alpha_1 < \alpha_2 < \alpha_3 < \ldots$ with supremum equal to α. Is this result true for $\alpha = \omega_1$?

11. Show that, for every countable ordinal α, there is a subset of \mathbb{Q} of order-type α. Why is there no subset of \mathbb{R} of order-type ω_1?

12. An operation $\alpha \ast \beta$ is defined on ordinals as follows. We set $0 \ast \beta$ to be ω^β, and $\alpha^+ \ast \beta$ to be the β-th ordinal γ such that $\alpha \ast \gamma = \gamma$, and $\lambda \ast \beta$ to be the supremum of the set $\{\alpha \ast \beta : \alpha < \lambda\}$ for λ a non-zero limit. Explain why this definition makes sense. Describe the ordinals $1 \ast 0, 1 \ast 1, 1 \ast 2$ and $2 \ast 0$. Is there a countable ordinal α such that $\alpha \ast 0 = \alpha$?

13. Is it possible to select for each countable (non-zero) limit ordinal α an ordinal $x_\alpha < \alpha$ in such a way that the x_α are distinct?

14. Let X be a totally ordered set such that the only order-preserving injection from X to itself is the identity. Must X be finite?