Logic and Set Theory Examples 1
PTJ Michaelmas 2012

Important Note: There are probably more questions on these example sheets than any one
student will wish to attempt, and they are not intended to be all of the same level of difficulty.
Some (marked by — signs) are mere five-finger exercises to ensure that you have understood
the basic definitions, and may safely be omitted if you are confident that you have understood
them. Others (marked by + signs) are more challenging and/or slightly off the syllabus, and are
intended for students who wish to explore the subject a bit more widely than can be done in the
course.

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at ptj@dpmms.cam.ac.uk.

— 1. Write down all possible Hasse diagrams for a poset with four elements. [There are 16 of
them.] How many of them are complete?

— 2. Which of the following posets are complete? And which are chain-complete?

(i) The set of all finite subsets of an arbitrary set, ordered by inclusion.

(ii) The set of cofinite subsets (that is, subsets with finite complements) of an arbitrary set,
ordered by inclusion.

(iii) The set of all transitive relations on an arbitrary set A, regarded as subsets of A x A and
ordered by inclusion.

(iv) The set of all partial orderings of A, ordered by inclusion.

3. Let P and @ be posets. There are (at least) two possible ways of defining a partial ordering
on P x Q: the pointwise order is defined by (a,c) < (b,d) if and only if @ < b and ¢ < d, and the
lezicographic order by (a,c) < (b,d) if and only if either a < b or (a = b and ¢ < d). Verify that
both of these are partial orders. For each of the following properties, determine whether P x @)
has the property (a) in the pointwise ordering, and (b) in the lexicographic ordering, if both P
and ) have the property:

(i) being complete;

(ii) being totally ordered;

(iii) being chain-complete.

4. (i) Show that the fixed point of the function f constructed in the proof of the Knaster—Tarski
Theorem given in lectures is in fact the unique largest fixed point of f. Modify the proof so that
it produces the smallest fixed point of f instead.

(ii) More generally, show that if P is a complete poset and f: P — P an order-preserving
map, then the set F' of all fixed points of f is a complete poset in the ordering it inherits from
P. [Warning: joins and meets in F' need not coincide with those in P.]

— 5. For each of the following functions ®: [N—N] — [N—N], determine (a) whether @ is
order-preserving, and (b) whether it has a fixed point:

(i) ©(f)(n) = f(n) + 1 if f(n) is defined, undefined otherwise.

(ii) (f)(n) = f(n) + 1 if f(n) is defined, ®(f)(n) = 0 otherwise.

(iii) (f)(n) = f(n — 1)+ 1 if f(n — 1) is defined, ®(f)(n) = 0 otherwise.

6. Let P be a chain-complete poset with a least element, and f: P — P an order-preserving
map. Show that the set of fixed points of f has a least element and is chain-complete in the
ordering it inherits from P. Deduce that if fi, fo, ..., f, are order-preserving maps P — P which
commute with each other (i.e. fjo f; = f; o f; for all 4, j), then they have a common fixed point.
Show by an example that two order-preserving maps P — P which do not commute with each
other need not have a common fixed point.



+ 7. We call a poset P Bourbakian if every order-preserving map P — P has a least fixed
point. Let P and @) be Bourbakian posets, and let h: P x ) — P x () be a map which is order-
preserving with respect to the pointwise ordering (cf. question 3). We denote the two components
of the ordered pair h(z,y) by hi(z,y) and hs(z,y) respectively.

(i) Show that, for each fixed x € P, the mapping g,: @ — @ defined by g¢.(y) = ha(z,y) is
order-preserving. Let m(z) denote its least fixed point.

(ii) Show that m is an order-preserving map P — Q. [Hint: if x; < 25, consider the effect of
gz, on the set {y € Q | y < m(z2)}.]

(iii) Show that the map f: P — P defined by f(z) = hi(xz, m(z)) is order-preserving. Let zg
denote its least fixed point.

(iv) Show that (zg, m(zo)) is the least fixed point of h. [Thus a product of two Bourbakian
posets is Bourbakian.|

8. A poset (P, <) is said to be inductive if each chain in P has an upper bound (but not necessarily
a least upper bound). The usual statement of Zorn’s Lemma says that every inductive poset (and
not merely every chain-complete poset) has enough maximal elements.

(i) Give an example of a poset which is inductive but not chain-complete.

(ii) If (P, <) is any poset, let C' denote the set of all chains in P, ordered by inclusion. Show
that C' is chain-complete.

(iii) If M is a maximal element of the poset C' just defined, show that any upper bound for
M in P is (a) a member of M, and (b) a maximal element of P.

(iv) Deduce the usual statement of Zorn’s Lemma from the version proved in lectures.

9. Use Zorn’s Lemma to prove

(i) that every partial ordering on a set can be extended to a total ordering;

(ii) that, for any two sets A and B, there exists either an injection A — B or an injection
B — A |hint: consider the set of bijections from subsets of A to subsets of B, with a suitable
ordering].

— 10. Which of the following posets are lattices? Of those that are lattices, which are distributive?
(i) The set of all subspaces of a vector space, ordered by inclusion.
(ii) The set of natural numbers, ordered by divisibility.
(iii) The set Y% of all words over an alphabet ¥ (that is, finite strings of members of X)),
ordered by the relation ‘is a prefix of” (that is, w < z iff = wz for some z).
(iv) The unit square [0, 1] x [0, 1] with the lexicographic ordering (cf. question 3).

11. (i) Let L be the (five-element) lattice of subgroups of the non-cyclic group of order four.
Show that there are no lattice homomorphisms L — 2.

(ii) Find an example of a finite lattice L which admits at least one homomorphism L — 2,
but does not have enough such homomorphisms to separate its elements. [There is one with five
elements.]

+ 12. A lattice L is called a Heyting algebra if, for any two elements a,b € L, there is a unique
largest ¢ € L with ¢ A a < b. (The largest such c is usually denoted a=>b; this defines a binary
operation = on L, which is called Heyting implication.)

(i) Show that every Boolean algebra is a Heyting algebra.

(ii) Show that every Heyting algebra is a distributive lattice.

(iii) Show that a complete lattice L is a Heyting algebra if and only if it satisfies the ‘infinite

distributive law’
a/\\/S:\/{a/\s |se S}

for all @ € L and S C L. [Hint: consider \/{c € L | ¢ Aa < b}.] Deduce that every finite
distributive lattice is a Heyting algebra.

(iv) If X is a topological space, show that the lattice O(X) of open subsets of X is a Heyting
algebra. Under what conditions on X is it a Boolean algebra?



