Logic and Set Theory Examples 2

PTJ Lent 2012

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at ptj@dpmms.cam.ac.uk.

- -1. Which of the following propositional formulae are tautologies?
 - (i) $((p \Rightarrow (q \Rightarrow r)) \Rightarrow (q \Rightarrow (p \Rightarrow r)))$;
 - (ii) $(((p \Rightarrow q) \Rightarrow r) \Rightarrow ((q \Rightarrow p) \Rightarrow r));$
 - (iii) $(((p \Rightarrow q) \Rightarrow p) \Rightarrow p)$;
 - (iv) $((p \Rightarrow (p \Rightarrow q)) \Rightarrow p)$.
- 2. Use the Deduction Theorem to show that the converse of the third axiom (i.e. the formula $(p \Rightarrow \neg \neg p)$) is a theorem of the propositional calculus.
- 3. Let t be a propositional formula not involving the constant \bot , and let $t' = t[\bot/p]$ be the formula obtained from t by substituting \bot for all occurrences of a particular propositional variable p in t. Suppose that t' is a tautology but t is not; show that any proof of t' in the propositional calculus must involve an instance of the third axiom. Does this result remain true (a) if t is allowed to contain occurrences of \bot , or (b) if \bot is replaced by \top ?
- **4.** Write down a proof of $(\bot \Rightarrow q)$ in the propositional calculus [hint: observe the result of question 3], and hence write down a deduction of $(p\Rightarrow q)$ from $\{\neg p\}$.
- **5** Show that if there is a deduction of t from $S \cup \{s\}$ in n lines (that is, consisting of n consecutive formulae), then $(s \Rightarrow t)$ is deducible from S in at most 3n + 2 lines. Show further that there is a deduction of \bot from $\{((p \Rightarrow q) \Rightarrow p), (p \Rightarrow \bot)\}$ in 16 lines [hint: use question 4], and hence calculate an upper bound for the length of a proof of the tautology of question 1(iii).
- **6**. The beliefs of each member of a finite non-empty set I of individuals are represented by a consistent, deductively closed set of propositional formulae (in some fixed language $\mathcal{L}(P)$). Show that the set $\{t \in \mathcal{L}(P) \mid \text{all members of } I \text{ believe } t\}$ is consistent and deductively closed. Is the set $\{t \mid \text{over half the members of } I \text{ believe } t\}$ deductively closed or consistent?
- 7. A group G is called *orderable* if there exists a total ordering \leq on G such that $g \leq h$ implies $gk \leq hk$ and $kg \leq kh$ for all k. Write down a propositional theory whose models are orderings of a given group G, and use the Compactness Theorem to show that G is orderable if and only if all its finitely-generated subgroups are orderable. Using the structure theorem for finitely-generated abelian groups, deduce that an abelian group is orderable if and only if it is torsion-free (i.e. it has no non-identity elements of finite order).
- + 8. Let P be a set of primitive propositions. By a Heyting valuation of P we mean a function $v \colon P \to H$ from P to (the underlying set of) a Heyting algebra H (see sheet 1, question 12, for the definition). We extend v to a function $\overline{v} \colon \mathcal{L}(P) \to H$ in the obvious way: that is, $\overline{v}(\bot)$ is taken to be the least element 0 of H, and $\overline{v}(s \Rightarrow t)$ is the Heyting implication $\overline{v}(s) \Rightarrow \overline{v}(t)$ in H. A formula t is said to be a Heyting tautology if $\overline{v}(t) = 1$ for all Heyting valuations v (in arbitrary Heyting algebras H) of the primitive propositions involved in t.
- (i) Verify that the axioms (K) and (S) are Heyting tautologies, and deduce that any formula which is provable in the propositional calculus without using the third axiom is a Heyting tautology.
 - (ii) Show that $(\bot \Rightarrow q)$ is a Heyting tautology.
- (iii) By considering a suitable valuation $\{p,q\} \to T$ where T is a three-element chain, show that the formula of question 1(iii) is not a Heyting tautology.
 - (iv) Is the formula $(((p \Rightarrow q) \Rightarrow r) \Rightarrow (((q \Rightarrow p) \Rightarrow r) \Rightarrow r))$ a Heyting tautology?

- **9**. Let P be a set of primitive propositions. We say two subsets S and T of $\mathcal{L}(P)$ are equivalent if every member of S is derivable from T, and vice versa. We say S is independent if $S \setminus \{s\}$ is not equivalent to S, for any $s \in S$.
- (i) If P is finite, show that any subset S of $\mathcal{L}(P)$ has an independent subset S' which is equivalent to S.
 - (ii) Show that the result of (i) can fail if P is infinite.
- (iii) Show that any countable $S \subseteq \mathcal{L}(P)$ is equivalent to an independent set (not necessarily a subset of S).
- 10. Describe sets of axioms in suitable first-order languages (to be specified) for the following theories:
 - (i) the theory of ordered groups (i.e., groups with a compatible total ordering, cf. question 7);
 - (ii) the theory of fields;
- (iii) the theory of fields of order p, for a fixed prime p [hint: take a signature with plenty of constants];
- (iv) the theory of infinite-dimensional vector spaces over a (given) finite field F [hint: first express the assertion ' $\{x_1, \ldots, x_n\}$ is linearly independent' as a finite conjunction];
 - (v) the theory of algebraically closed fields of characteristic zero;
 - (vi) the theory of posets in which every element lies below some maximal element;
- (vii) the theory of totally ordered sets which are densely ordered (i.e. between any two elements there lies a third one) and have neither greatest nor least elements.
- 11. By a substructure of an (Ω, Π) -structure A, we mean a subset B of the underlying set of A which is closed under the operations in Ω (that is, $b_1 \ldots, b_n \in B$ implies $\omega_A(b_1, \ldots, b_n) \in B$ for each $\omega \in \Omega$), made into an (Ω, Π) -structure by taking ω_B to be the restriction of ω_A to B^n , and $[\pi]_B$ to be $[\pi]_A \cap B^n$ for each $\pi \in \Pi$.
- (i) Show that if B is a substructure of A and ϕ is a quantifier-free formula of $\mathcal{L}(\Omega, \Pi)$ (with n free variables, say), then $[\phi]_B = [\phi]_A \cap B^n$. Give an example to show that this equality may fail if ϕ contains quantifiers.
- (ii) A first-order theory T is called *universal* if its axioms all have the form $(\forall \vec{x})\phi$ where \vec{x} is a (possibly empty) string of variables and ϕ is quantifier-free. Show that if T is universal, then every substructure of a T-model is a T-model.
- (iii) Similarly, T is called *inductive* if its axioms have the form $(\forall \vec{x})(\exists \vec{y})\phi$ where ϕ is quantifier-free. Show that if T is inductive, and A is an (Ω, Π) -structure, then the set of substructures of A which are T-models is closed under unions of chains.
- (iv) Which of the theories of question 10 are (axiomatizable as) universal theories? And which are inductive?
- + 12 Let T be a first-order theory over a signature Σ , and let T_{\forall} denote the set of all universal sentences over Σ which are derivable from T. Let M be a model of T_{\forall} . Let Σ' be the signature obtained from Σ by adjoining one new constant c_m for each element m of M, and let D_M be the theory over Σ' consisting of all sentences $\phi[c_{m_1}, \ldots, c_{m_k}/x_1, \ldots, x_k]$ where ϕ is a quantifier-free formula over Σ with free variables x_1, \ldots, x_k , and $(m_1, \ldots, m_k) \in [\phi]_M$. Show that $T \cup D_M$ is consistent, and deduce that there is a T-model \widehat{M} having a substructure isomorphic to M. Hence show that the converse of question 11(ii) holds, i.e. that if T is a first-order theory for which every substructure of a T-model is a T-model, then there is a universal theory (over the same signature) having the same models as T.

[Method: suppose $T \cup D_M \vdash \bot$. Let F be a finite subset of this theory which is inconsistent; let ψ be the conjunction of the members of D_M which occur in F, and suppose c_{m_1}, \ldots, c_{m_r} are the constants which appear in ψ . Let ψ' be the formula obtained from ψ on replacing the c_{m_i} by variables x_i ; show that $(\forall x_1, \ldots, x_r) \neg \psi'$ is derivable from T, but not satisfied in M.]