LINEAR ANALYSIS - EXAMPLES 3

- **1.** Let X normal topological space and $S \subset X$. Show that there is a continuous function $f: X \to \mathbb{R}$ such that $S = f^{-1}(\{0\})$ iff S is a closed countable intersection of open sets.
- **2.** Given K Hausdorff compact, prove: C(K) is finite-dimensional iff K is a finite set.
- **3.** Given K Hausdorff compact and a finite open cover $K \subset \bigcup_{i=1}^n U_i$, show that there are continuous functions $\chi_i : K \to [0,1]$ such that $\chi_i = 0$ on $K \setminus U_i$ and $\sum_{i=1}^n \chi_i = 1$ on K.
- **4.** Given K Hausdorff compact, show that C(K) is separable iff K is metrizable.
- **5.** Let X separable Hausdorff compact space and (f_n) equi-bounded and equi-continuous on X. Given Y countable dense in X prove, by a diagonal argument, that a subsequence of (f_n) converges pointwise on Y. Deduce a proof of the Arzelà-Ascoli Theorem.
- **6.** Given K Hausdorff compact, prove, using the Arzelà-Ascoli Theorem or otherwise, that if $f_n \in C_{\mathbb{R}}(K)$ is such that $f_{n+1}(x) f_n(x)$ has constant sign for all $x \in K$ and $n \geq 1$ and f_n converges pointwise to a continuous limit, then (f_n) converges uniformly.
- 7. Consider the product rule $(f * g)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(x y)g(y) \, dy$ on $C(\mathbb{T})$. Prove that $(C(\mathbb{T}), \|\cdot\|_{\infty})$ is a Banach Algebra with this product, that is not unitary.
- **8.** Consider $f \in C([0,1])$ such that $\int_0^1 f(x)x^n dx = 0$ for all $n \ge 0$. Prove that f = 0.
- **9.** Given $f \in C(\mathbb{T})$ and $S_N(x) := \sum_{k=-N}^{+N} \hat{f}(k) e^{ikx}$ prove the formula:

$$G_N := \frac{1}{N} \sum_{\ell=0}^{N-1} S_\ell = (F_N * f) \quad \text{with} \quad F_N(x) := \sum_{\ell=-N}^{+N} \left(1 - \frac{|\ell|}{N} \right) e^{i\ell x} = \frac{1}{N} \left(\frac{\sin(\frac{Nx}{2})}{\sin(\frac{x}{2})} \right)^2.$$

Prove that $G_N \to f$ uniformly and deduce an alternative proof of the Weierstrass approximation Theorem (i.e. the density of polyomials in C([0,1]) for the uniform convergence).

- **10.** Let $T: E \to E$ linear isometry on E Euclidean, show $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all x, y.
- **11.** Let V be a complex inner product space and $T:V\to V$ a linear map. Show that if $\langle Tx,x\rangle=0$ for all $x\in V$, then T=0. Does the same conclusion hold in the real case?
- **12.** Given H separable Hilbert space, are there F_1 and F_2 two closed subspaces different from H so that $F_1 \cap F_2 = \{0\}$ and $F_1 + F_2$ dense in H but not H?
- **13.** Show that the unit ball of ℓ^2 contains sequences (x_n) so that $||x_m x_n|| > \sqrt{2}$ for all $m, n \ge 1$ so that $m \ne n$. Can the constant $\sqrt{2}$ be improved (made bigger)?
- **14.** Construct E Euclidean space and $F \subset E$ closed subspace s.t. $F \neq E$ and $F^{\perp} = \{0\}$.
- **15.** Compute $\sum_{n\geq 1}\frac{1}{n^4}$ with the Parseval identity applied to a suitable $f\in C(\mathbb{T})$.