- 1. Let $p < \infty$ and $x \in \ell_p$. Show that there is an $f \in \ell_p^*$ with ||f|| = 1 and f(x) = ||x||.
- 2. Let f be a linear functional on a normed space X. Prove that f is continuous if and only if ker f is closed.
- 3. Let $A \subset Y \subset X$ with A nowhere dense in Y. Show that A is nowhere dense in X.
- 4. Prove Osgood's theorem: if (f_n) is a sequence of continuous functions $[0,1] \to \mathbb{R}$ such that $(f_n(t))$ is bounded for every $t \in [0,1]$, then there is an interval [a,b] with a < b on which the f_n are uniformly bounded.
- 5. Let X be a closed subspace of ℓ_1 . Assume that every $y = (x_{2n}) \in \ell_1$ extends to a sequence $x = (x_n) \in X$. Show that there is a constant C such that x can always be chosen to satisfy $||x|| \le C||y||$.
- 6. Assume that X is a closed subspace of C[0,1] such that every element of X is continuously differentiable. Show that X is finite-dimensional.
- 7. Suppose that $T: X \to Y$ satisfies the conditions in the Open Mapping Lemma. Show that Y is complete.
- 8. Let Y be a proper subspace of a Banach space X. Can Y be dense \mathcal{G}_{δ} , i.e., can Y be the intersection of a sequence of dense open sets in X?
- 9. Deduce the Baire Category Theorem from the fact that a non-empty complete metric space is of second category in itself. (This is more subtle than it looks!)
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that for every x > 0 we have $f(nx) \to 0$ as $n \to \infty$. Show that $f(x) \to 0$ as $x \to \infty$.
- 11. Give a direct, elementary proof of the Principle of Uniform Boundedness (*i.e.*, one that does not use the Baire Category Theorem).
- 12. Does there exist a function $f: [0,1] \to \mathbb{R}$ which is continuous at every rational and discontinuous at every irrational?
- 13. Let $f: [0,1] \to \mathbb{R}$ be a pointwise limit of a sequence of continuous functions. Show that f has a point of continuity.
- 14. Assume that X is a closed subspace of $L_2[0,1]$ such that every element of X is also in $L_{\infty}[0,1]$. Show that X is finite-dimensional.
- $^{+}15$. Let X be a normed space that is homeomorphic to a complete metric space. Prove that X is complete.
- ⁺16. Let $f: \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function such that for every $x \in \mathbb{R}$ there is an $n \in \mathbb{N}$ with $f^{(m)}(x) = 0$ for all $m \ge n$. Prove that f is a polynomial.