

1. Define *normed vector space*, *Banach space*, *inner product (Euclidean) space*, *Hilbert space*. Give examples of a normed vector space which is not a Banach space, a Banach space which does not arise from an inner product (Euclidean) space, and an inner product (Euclidean) space which is not a Hilbert space. What is the relation of these concepts in the finite dimensional case?

State the *inverse mapping theorem* for maps $T : \mathcal{X} \rightarrow \mathcal{Y}$ where \mathcal{X}, \mathcal{Y} are Banach spaces. Provide a counterexample in the case where \mathcal{X} and \mathcal{Y} are assumed only to be normed vector spaces.

2. State (without proof) the *Stone-Weierstrass Theorem*. Describe the closure in $C[0, 2\pi]$ of the sets listed below:

1. The set of trigonometric polynomials, i.e. the set of polynomials in $\sin \theta, \cos \theta$.
2. The set of all polynomials vanishing at 0.
3. The set of all polynomials $\{p : p(0) = 0 \text{ or } p(1) = 0\}$.
4. The set of all polynomials with rational coefficients.
5. The set of piecewise linear functions.

Justify your answers.

3. Let X be a topological space, and let f_i be a collection of functions $f_i : X \rightarrow \mathbb{R}$. Define what it means for $\{f_i\}$ to be *uniformly bounded* on X . Prove Osgood's theorem: Let f_1, f_2, \dots be continuous functions $[0, 1] \mapsto \mathbb{R}$ such that for each $x \in [0, 1]$, the set $\{f_i(x)\}$ is bounded. Then there is a non-empty subinterval $[a, b]$, with $a < b$, such that $\{f_i\}$ is uniformly bounded. Show by explicit counterexample that the assumption of continuity cannot be dropped.

4. Let \mathcal{X} be a metric space. Define what it means for a subset $Y \subset \mathcal{X}$ to be of *first category* and of *second category*. If \mathcal{X} is complete, and Y is closed and non-empty, of what category is it? Let the subset $Y \subset [0, 1]$ be defined by

$$Y = \{x \in [0, 1] \setminus \mathbb{Q} : \forall_{n \geq 0} \exists_{0 \leq p \leq q, q > n} : |x - p/q| < 1/q^3\}.$$

In the above p and q are integers. Is $Y = \emptyset$? Is $Y = [0, 1] \setminus \mathbb{Q}$? Justify your answers.

5. Let V be a finite dimensional complex vector space, and let T be a linear operator $T : V \rightarrow V$. Choose a norm on V . This makes V into a Banach space. (Why?) State the definition of the *spectrum* of T , denoted $\sigma(T)$. What can be said about $\sigma(T)$, in view of finite dimensionality? Does the spectrum depend on the choice of norm above?

Alternatively, choose an inner product $e(\cdot, \cdot)$ on V . This makes V into a Hilbert space. (Why?) State what it means for T to be *self-adjoint* with respect to e . Suppose now T is indeed self-adjoint. Prove the spectral theorem for T , i.e. prove that there exist orthogonal unit vectors v_1, \dots, v_n , where n is the dimension of V , and real numbers $\lambda_1, \dots, \lambda_n$, such that

$$T(v) = \sum_i \lambda_i e(v_i, v) v_i,$$

where $\{\lambda_i\} = \sigma(T)$. Are v_i necessarily unique, up to reordering?

For comments, email M.Dafermos@dpmms.cam.ac.uk