

1. Let  $G$  be a graph and  $v \in G$ . Must  $\kappa(G - v) \leq \kappa(G)$ ?
2. Show that, for any graph  $G$ ,  $\kappa(G) \leq \lambda(G)$ , and that if  $G$  is 3-regular then  $\kappa(G) = \lambda(G)$ . Given positive integers  $k \leq \ell$ , construct a graph  $G$  with  $\kappa(G) = k$  and  $\lambda(G) = \ell$ .
3. For a set  $B \subset V(G)$  and a vertex  $a$  not in  $B$ , an  $a$ - $B$  fan is a family of  $|B|$  paths from  $a$  to  $B$ , any two meeting only at  $a$ . Show that a graph  $G$  (with  $|G| > k$ ) is  $k$ -connected if and only if there is an  $a$ - $B$  fan for every  $B \subset V(G)$  with  $|B| = k$  and every vertex  $a$  not in  $B$ .
4. Let  $G$  be a  $k$ -connected graph ( $k \geq 2$ ), and let  $x_1, x_2, \dots, x_k$  be vertices of  $G$ . Show that there is a cycle in  $G$  containing all the  $x_i$ .
5. Show directly (without using expectation and variance methods) that if  $p \in (0, 1)$  is constant then a. e.  $G \in \mathcal{G}(n, p)$  contains a triangle, whereas if  $p = n^{-2}$  then a. e.  $G \in \mathcal{G}(n, p)$  is triangle-free.
6. Prove that, for any  $k$ , there is a tournament in which, for any  $k$  players, there is a player who beats all of them. Exhibit such a tournament for  $k = 2$ .
7. Let  $G$  be a (not necessarily planar) graph with  $|G| = n$  and  $e(G) = m$ . Suppose that  $G$  is drawn in the plane, but with edges allowed to cross. Let  $t$  be the number of pairs of edges which cross. Show that  $t \geq m - 3n + 6$   
Suppose now  $m \geq 4n$ . By considering a random set  $W \subset V(G)$  containing each vertex of  $G$  independently with probability  $4n/m$ , show that in fact  $t \geq m^3/64n^2$ .
8. Let  $p = \lambda \log n/n$  where  $\lambda > 0$  is constant. Show that if  $\lambda < 1$  then a. e.  $G \in \mathcal{G}(n, p)$  has an *isolated vertex*, i. e. a vertex of degree zero, whereas if  $\lambda > 1$  then a. e.  $G \in \mathcal{G}(n, p)$  has no isolated vertex.
9. Show that  $R(s, t) \geq n - \binom{n}{s}p^{\binom{s}{2}} - \binom{n}{t}(1-p)^{\binom{t}{2}}$  for all  $n \in \mathbb{N}$  and  $p \in (0, 1)$ . By choosing  $p$  appropriately, deduce that  $R(4, t) = \Omega((t/\log t)^{\frac{3}{2}})$ .
10. Find the eigenvalues of the complete  $r$ -partite graph  $K_r(t)$  and of the cycle  $C_n$ .
11. Let  $G$  be a graph in which every edge is in a unique triangle and every non-edge is a diagonal of a unique 4-cycle. Show that  $|G| \in \{3, 9, 99, 243, 6273, 494019\}$ .
12. Any two members of a certain College have a unique common enemy who is also a member of the College. Show that there is some College member (the ‘Junior Bursar’) who is everyone else’s enemy.