

1. Show that a connected graph G with at least one vertex must contain a vertex v such that $G - v$ is connected.
2. For which m and n is the complete bipartite graph $K_{m,n}$ Hamiltonian?
3. What is $\lim_{n \rightarrow \infty} ex(P; n) / \binom{n}{2}$, where P is the Petersen graph (shown)?
4. For each $r \geq 3$, construct a graph of chromatic number r which contains no K_r .
5. Without assuming Turán's theorem, show that the Turán graph $T_r(n)$ is the unique r -partite graph of order n with the largest possible number of edges.
6. Let G be a graph. Define a relation \rightarrow on $V(G)$ by $u \rightarrow v$ iff there is a path in G from u to v . Show that \rightarrow is an equivalence relation. Hence deduce that G can be written uniquely as a disjoint union of connected subgraphs each with at least one vertex.
7. Let G be a graph of order n . Suppose that $d(x) + d(y) \geq n$ for all distinct, non-adjacent $x, y \in G$. Show that G is Hamiltonian. Deduce that any graph of order $n \geq 3$ with $\binom{n}{2} - n + 3$ edges must be Hamiltonian. For each $n \geq 3$, give an example of a graph with $\binom{n}{2} - n + 2$ edges which is not Hamiltonian.
8. What is $ex(K_{1,s}; n)$?
9. Let x_1, x_2, \dots, x_{3n} be points in the plane such that no two of them are more than distance 1 apart. Prove that at most $3n^2$ of the distances $\|x_i - x_j\|$ ($i < j$) are greater than $1/\sqrt{2}$.
10. A *deleted* K_r consists of a K_r from which an edge has been removed. Show that if G is a graph of order $n \geq r + 1$ with $e(G) > t_{r-1}(n)$ then G contains a deleted K_{r+1} .
11. For each positive integer n , let g_n be the largest integer k such that it is possible to colour k edges of the complete graph K_n blue or yellow without creating a monochromatic (blue or yellow) triangle. Show that $g_n / \binom{n}{2}$ converges, and find $\lim_{n \rightarrow \infty} g_n / \binom{n}{2}$.
12. How many edges can a graph G of order n containing precisely one triangle have?
13. The *upper density* $ud(G)$ of an infinite graph G is the supremum of the densities of its large finite subgraphs; that is to say,

$$ud(G) = \lim_{n \rightarrow \infty} \left(\sup \left\{ e(H) / \binom{n}{2} : H \subset G, |H| = n \right\} \right).$$

Show that the upper density of every infinite graph (is well-defined and) lies in the set $\{0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\}$.

⁺14. Show that an r -regular graph of order $2r + 1$ must be Hamiltonian.

⁺15. Construct a triangle-free graph of chromatic number 1526.

