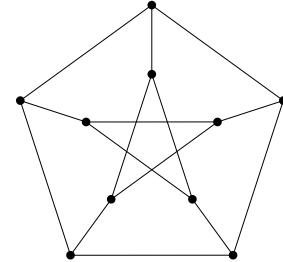


1. Construct a 3-regular graph on 8 vertices. Is there a 3-regular graph on 9 vertices?
2. How many spanning trees does K_4 have?
3. Prove that every connected graph has a vertex that is not a cutvertex.
4. Let G be a graph on n vertices, $G \neq K_n$. Show that G is a tree if and only if the addition of any edge to G produces exactly 1 new cycle.
5. Let $n \geq 2$, and let $d_1 \leq d_2 \dots \leq d_n$ be a sequence of integers. Show that there is a tree with degree sequence d_1, \dots, d_n if and only if $d_1 \geq 1$ and $\sum d_i = 2n - 2$.
6. Let T_1, \dots, T_k be subtrees of a tree T , any two of which have at least one vertex in common. Prove that there is a vertex in all the T_i .
7. Show that every graph of average degree d contains a subgraph of minimum degree at least $d/2$.
8. The *clique number* of a graph G is the maximum order of a complete subgraph of G . Show that the possible clique numbers for a regular graph on n vertices are $1, 2, \dots, \lfloor n/2 \rfloor$ and n .
9. Let G be a graph on vertex set V . Show that there is a partition $V_1 \cup V_2$ of V such that in each of $G[V_1]$ and $G[V_2]$ all vertices have even degree.
10. For which n and m is the complete bipartite graph $K_{n,m}$ planar?
11. Prove that the Petersen graph (shown) is not planar.



12. The *square* of a graph G has vertex set that of G and edge set $\{xy : d_G(x, y) \leq 2\}$. For which n is the square of the n -cycle planar?
13. Prove that every planar graph has a drawing in the plane in which every edge is a straight-line segment.
- +14. The group of all isomorphisms from a graph G to itself is called the *automorphism group* of G . Show that every finite group is the automorphism group of some graph. Is every group the automorphism group of some (possibly infinite) graph?