

Galois Theory: Example Sheet 3

Michaelmas 2025

1. Find the Galois group of $X^4 + X^3 + 1$ over each of the finite fields $\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_4$.
2. (i) Let p be an odd prime, and let $\alpha \in \mathbb{F}_{p^n}$. Show that $\alpha \in \mathbb{F}_p$ if and only if $\alpha^p = \alpha$, and that $\alpha + \alpha^{-1} \in \mathbb{F}_p$ if and only if either $\alpha^p = \alpha$ or $\alpha^p = \alpha^{-1}$.
(ii) Apply (i) to a root of $X^2 + 1$ in a suitable extension of \mathbb{F}_p to show that -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$. [You have probably seen a different proof of this fact in IB GRM.]
(iii) Show that $\alpha^4 = -1$ if and only if $(\alpha + \alpha^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm 1 \pmod{8}$.
3. (i) Let $u = X_1 + \omega X_2 + \omega^2 X_3$ and $v = X_1 + \omega^2 X_2 + \omega X_3$ where $\omega = e^{2\pi i/3}$. Find expressions for $u^3 + v^3$ and uv in terms of the elementary symmetric polynomials $s_1 = X_1 + X_2 + X_3$, $s_2 = X_1 X_2 + X_1 X_3 + X_2 X_3$ and $s_3 = X_1 X_2 X_3$.
(ii) Express $\sum_{i < j} X_i^2 X_j^2 \in \mathbb{Z}[X_1, \dots, X_n]$ as a polynomial in the elementary symmetric polynomials.
4. Let X_1, \dots, X_n be indeterminates and set

$$A = \begin{pmatrix} 1 & 1 & \dots & 1 \\ X_1 & X_2 & \dots & X_n \\ \vdots & \vdots & \ddots & \vdots \\ X_1^{n-1} & X_2^{n-1} & \dots & X_n^{n-1} \end{pmatrix}.$$

Show that $\det A = \prod_{1 \leq i < j \leq n} (X_j - X_i)$.

(Hint: First show that $X_i - X_j$ is a factor of $\det A$).

5. Let L/K be an extension of finite fields. Suppose that $\#K = q$ and write σ for the q -power Frobenius. Using the fact that L/K is Galois, with Galois group generated by σ , show that the maps $\text{Tr}_{L/K}: L \rightarrow K$ and $N_{L/K}: L \rightarrow K$ are surjective.
6. Let f be a monic quartic polynomial, and g its resolvent cubic. Show that the discriminants of f and g are equal.
7. (i) Let $f(X) = \prod_{i=1}^n (X - \alpha_i)$. Show that $f'(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j)$, and deduce that $\text{Disc}(f) = (-1)^{n(n-1)/2} \prod_{i=1}^n f'(\alpha_i)$.
(ii) Let $f(X) = X^n + bX + c = \prod_{i=1}^n (X - \alpha_i)$, with $n \geq 2$. Show that

$$\alpha_i f'(\alpha_i) = (n-1)b \left(\frac{-nc}{(n-1)b} - \alpha_i \right)$$

and deduce that

$$\text{Disc}(f) = (-1)^{n(n-1)/2} \left((1-n)^{n-1} b^n + n^n c^{n-1} \right).$$

8. (i) What are the transitive subgroups of S_4 ? Find a monic polynomial over \mathbb{Z} of degree 4 whose Galois group is $V = \{\text{id}, (12)(34), (13)(24), (14)(23)\}$.

(ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree n . Suppose that the Galois group of f over \mathbb{Q} doesn't contain an n -cycle. Prove that the reduction of f modulo p is reducible for every prime p .

(iii) Hence exhibit an irreducible polynomial over \mathbb{Z} whose reduction mod p is reducible for every p .

9. (i) Let p be prime. Show that any transitive subgroup G of S_p contains a p -cycle. Show that if G also contains a transposition then $G = S_p$.

(ii) Prove that the Galois group of $X^5 + 2X + 6$ is S_5 .

(iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree p which has exactly two non-real roots, then its Galois group is S_p . Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$f = X^p + mp^2(X - 1)(X - 2) \cdots (X - p + 2) - p$$

has Galois group S_p .

10. Compute the Galois group of $X^5 - 2$ over \mathbb{Q} .

11. Let $f \in \mathbb{Q}[X]$ be an irreducible quartic polynomial whose Galois group is A_4 . Show that its splitting field can be written in the form $K(\sqrt{a}, \sqrt{b})$ where K/\mathbb{Q} is a Galois cubic extension and $a, b \in K$. Show that the resolvent cubic of $X^4 + 6X^2 + 8X + 9$ has Galois group C_3 and deduce that the quartic has Galois group A_4 .

12. (i) Show that the Galois group of $f(X) = X^5 - 4X + 2$ over \mathbb{Q} is S_5 , and determine its Galois group over $\mathbb{Q}(i)$.

(ii) Find the Galois group of $f(X) = X^4 - 4X + 2$ over \mathbb{Q} and over $\mathbb{Q}(i)$.

13. Let p be an odd prime. Show that $K = \mathbb{Q}(\zeta_p)$ has a unique subfield of degree 2 over \mathbb{Q} . Let $f(X) = (X^p - 1)/(X - 1)$. Show that $f'(\zeta_p) = p\zeta_p^{p-1}/(\zeta_p - 1)$ and $N_{K/\mathbb{Q}}(f'(\zeta_p)) = p^{p-2}$. Compute the discriminant of f and deduce that the unique quadratic subfield of K is $\mathbb{Q}(\sqrt{\pm p})$ for some choice of sign. How does the correct choice of sign depend on p ?

Additional problems

14. Give an example of a field K of characteristic $p > 0$ and α and β of the same degree over K so that $K(\alpha)$ is not isomorphic to $K(\beta)$. Does such an example exist if K is a finite field? Justify your answer.

15. Factor into irreducibles $X^9 - X$ over \mathbb{F}_3 , and $X^{16} - X$ over both \mathbb{F}_2 and \mathbb{F}_4 .

16. Write $a_n(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_q[X]$ of degree exactly n .

(i) Show that an irreducible polynomial $f \in \mathbb{F}_q[X]$ of degree d divides $X^{q^n} - X$ if and only if d divides n .

(ii) Deduce that $X^{q^n} - X$ is the product of all irreducible monic polynomials of degree dividing n , and that

$$\sum_{d|n} da_d(q) = q^n.$$

(iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_2 .

(iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$a_n(q) = \frac{1}{n} \sum_{d|n} \mu(n/d) q^d.$$

17. Show that the Galois group of $X^5 + 20X + 16$ over \mathbb{Q} is A_5 .