Galois Theory: Extra Example Sheet

1. Let L / K be a finite Galois extension with Galois group $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$. Show that the subset $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset L$ is a K-basis for L if and only if $\operatorname{det}\left(\sigma_{i}\left(\alpha_{j}\right)\right) \neq 0$.
2. Let $\Phi_{n} \in \mathbb{Z}[X]$ denote the $n^{\text {th }}$ cyclotomic polynomial. We notice that for some small values of n the coefficients of Φ_{n} are always $-1,0$ or 1 . However this is not true in general. The aim of this question is to find the smallest counterexample.
Show that:
(i) If n is odd then $\Phi_{2 n}(X)=\Phi_{n}(-X)$.
(ii) If p is a prime dividing n then $\Phi_{n p}(X)=\Phi_{n}\left(X^{p}\right)$.
(iii) If p and q are distinct primes then the nonzero coefficients of $\Phi_{p q}$ are alternately +1 and -1 . [Hint: First show that if $1 /\left(1-X^{p}\right)\left(1-X^{q}\right)$ is expanded as a power series in X, then the coefficients of X^{m} with $m<p q$ are either 0 or 1.]
(iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φ_{n} are $-1,0$ or 1 .
(v) $\Phi_{3 \times 5 \times 7}$ has at least one coefficient which is not $-1,0$ or 1 .
3. (Hilbert's Theorem 90). Let L / K be a Galois extension with cyclic Galois group of order $n>1$, generated by σ. The aim of this question is to show that for $y \in L^{\times}$ we have

$$
y=x / \sigma(x) \text { for some } x \in L^{\times} \Longleftrightarrow N_{L / K}(y)=1
$$

(i) Show that if $x \in L^{\times}$and $y=x / \sigma(x)$, then $N_{L / K}(y)=1$.
(ii) Suppose that $y \in L^{\times}$with $N_{L / K}(y)=1$. Let $a_{0}=1$ and for $1 \leqslant k<n$, let $a_{k}=\prod_{0 \leqslant i \leqslant k-1} \sigma^{i}(y)$. Show that

$$
\sigma\left(a_{k}\right)= \begin{cases}y^{-1} a_{k+1} & \text { if } k<n-1 \\ y^{-1} a_{0} & \text { if } k=n-1\end{cases}
$$

(iii) Use the theorem on the linear independence of field homomorphisms to show that there exists $z \in L$ for which

$$
x=a_{0} z+a_{1} \sigma(z)+\cdots+a_{n-1} \sigma^{n-1}(z)
$$

satisfies $y=x / \sigma(x)$.
4. Let $L=k\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be the field of rational functions in n variables over a field k, and let $K=k\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, where the s_{i} are the elementary symmetric polynomials in X_{1}, \ldots, X_{n}.
(i) Let $\alpha=X_{1} X_{2} \ldots X_{r}$ for some $r \leqslant n$. Calculate $[K(\alpha): K]$ and find the Galois group $\operatorname{Gal}(L / K(\alpha))$ as an explicit subgroup of S_{n}.
(ii) Let $n=4$ and $\beta=\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)$. Calculate $[K(\beta): K]$ and find the Galois group $\operatorname{Gal}(L / K(\beta))$ as an explicit subgroup of S_{4}.
5. (Inverse Galois problem for finite abelian groups) Recall from Part II Number Theory the structure of the groups $(\mathbb{Z} / m \mathbb{Z})^{\times}$: if $m=\prod p^{r(p)}$ is the prime factorisation of m, then $(\mathbb{Z} / m \mathbb{Z})^{\times} \simeq \prod\left(\mathbb{Z} / p^{r(p)} \mathbb{Z}\right)^{\times}$(by the Chinese Remainder Theorem), and for prime powers we have:

- if p is odd then $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$is cyclic of order $(p-1) p^{r-1}$;
- if $r \geqslant 2$ then $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{\times} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}$.
(i) Dirichlet's theorem on primes in arithmetic progressions states that if a and b are coprime positive integers, then the set $\{a n+b \mid n \in \mathbb{N}\}$ contains infinitely many primes. Use this to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z} / m \mathbb{Z})^{\times}$for suitable m.
(ii) Deduce that every finite abelian group is the Galois group of some Galois extension K / \mathbb{Q}. [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.]
(iii) Find an explicit α for which $\mathbb{Q}(\alpha) / \mathbb{Q}$ is abelian with Galois group $\mathbb{Z} / 23 \mathbb{Z}$.

6. (Normal basis theorem) The aim of this question is to show that if L / K is a finite Galois extension then L / K has a basis of the form $\{\sigma(y) \mid \sigma \in \operatorname{Gal}(L / K)\}$ for some $y \in L$. Such a basis is called a normal basis.
(i) Let $G=\left\{\mathrm{id}=\sigma_{1}, \ldots, \sigma_{n}\right\}$ be a finite group. Let $A=\left(a_{i j}\right)$ be the $n \times n$ matrix with entries in $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ such that $a_{i j}=X_{k}$ whenever $\sigma_{i} \sigma_{j}=\sigma_{k}$. Let $D\left(X_{1}, \ldots, X_{n}\right)=\operatorname{det}(A)$. Show that $D(1,0, \ldots, 0) \neq 0$.
(ii) Let K be an infinite field. Show that if $F \in K\left[X_{1}, \ldots, X_{n}\right]$ is not the zero polynomial, then there exist $x_{1}, \ldots, x_{n} \in K$ with $F\left(x_{1}, \ldots, x_{n}\right) \neq 0$.
(iii) Prove that every finite Galois extension L / K has a normal basis, first in the case where K is infinite (use (i), (ii) and Question 1) and then in the case $\operatorname{Gal}(L / K)$ is cyclic (by viewing L as a $K[X]$-module and applying the structure theorem).
7. (Gauss sums) In this question, $\zeta_{m}=e^{2 \pi i / m} \in \mathbb{C}$ for a positive integer m.
(i) Let p be an odd prime. Show that if $r \in \mathbb{Z}$ then $\sum_{0 \leqslant s<p} \zeta_{p}^{r s}$ equals p if $r \equiv 0$ $(\bmod p)$ and equals 0 otherwise.
(ii) Let $\tau=\sum_{0 \leqslant n<p} \zeta_{p}^{n^{2}}$. Show that $\tau \bar{\tau}=p$. Show also that τ is real if -1 is a square $\bmod p$, and otherwise τ is purely imaginary (i.e. $\tau / i \in \mathbb{R}$).
(iii) Let $L=\mathbb{Q}\left(\zeta_{p}\right)$. Show that L has a unique subfield K which is quadratic over \mathbb{Q}, and that $K=\mathbb{Q}(\sqrt{\varepsilon p})$ where $\varepsilon=(-1)^{(p-1) / 2}$.
(iv) Show that $\mathbb{Q}\left(\zeta_{m}\right) \subset \mathbb{Q}\left(\zeta_{n}\right)$ if $m \mid n$. Deduce that if $0 \neq m \in \mathbb{Z}$ then $\mathbb{Q}(\sqrt{m})$ is a subfield of $\mathbb{Q}\left(\zeta_{4|m|}\right)$. [This is a simple case of the Kronecker-Weber Theorem, which states that every finite abelian extension of \mathbb{Q} is contained in some $\mathbb{Q}\left(\zeta_{n}\right)$.]
