## Galois Theory: Example Sheet 3 of 4

1. Give an example to show that if $M / L$ and $L / K$ are finite Galois extensions, then $M / K$ need not be Galois.
2. Find the Galois group of $X^{4}+X^{3}+1$ over each of the finite fields $\mathbb{F}_{2}, \mathbb{F}_{3}, \mathbb{F}_{4}$.
3. (i) Let $p$ be an odd prime, and let $\alpha \in \mathbb{F}_{p^{n}}$. Show that $\alpha \in \mathbb{F}_{p}$ if and only if $\alpha^{p}=\alpha$, and that $\alpha+\alpha^{-1} \in \mathbb{F}_{p}$ if and only if either $\alpha^{p}=\alpha$ or $\alpha^{p}=\alpha^{-1}$.
(ii) Apply (i) to a root of $X^{2}+1$ in a suitable extension of $\mathbb{F}_{p}$ to show that -1 is a square in $\mathbb{F}_{p}$ if and only if $p \equiv 1(\bmod 4)$. [You will probably have seen different proofs of this fact in earlier courses.]
(iii) Show that $\alpha^{4}=-1$ if and only if $\left(\alpha+\alpha^{-1}\right)^{2}=2$. Deduce that 2 is a square in $\mathbb{F}_{p}$ if and only if $p \equiv \pm 1(\bmod 8)$.
4. Let $L / K$ be an extension of finite fields. Suppose that $\# K=p^{r}$ and write $\phi$ for the $p$-power Frobenius. Using the fact that $L / K$ is Galois, with Galois group generated by $\sigma=\phi^{r}$, show that the maps $\operatorname{Tr}_{L / K}: L \rightarrow K$ and $N_{L / K}: L \rightarrow K$ are surjective.
5. Let $f$ be a monic quartic polynomial, and $g$ its resolvant cubic. Show that the discriminants of $f$ and $g$ are equal.
6. (i) What are the transitive subgroups of $S_{4}$ ? Find a monic polynomial over $\mathbb{Z}$ of degree 4 whose Galois group is $V=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$.
(ii) Let $f \in \mathbb{Z}[X]$ be monic and separable of degree $n$. Suppose that the Galois group of $f$ over $\mathbb{Q}$ doesn't contain an $n$-cycle. Prove that the reduction of $f$ modulo $p$ is reducible for every prime $p$.
(iii) Hence exhibit an irreducible polynomial over $\mathbb{Z}$ whose reduction $\bmod p$ is reducible for every $p$.
7. (i) Let $p$ be prime. Show that any transitive subgroup $G$ of $S_{p}$ contains a $p$-cycle. Show that if $G$ also contains a transposition then $G=S_{p}$.
(ii) Prove that the Galois group of $X^{5}+2 X+6$ is $S_{5}$.
(iii) Show that if $f \in \mathbb{Q}[X]$ is an irreducible polynomial of degree $p$ which has exactly two non-real roots, then its Galois group is $S_{p}$. Deduce that for $m \in \mathbb{Z}$ sufficiently large,

$$
f=X^{p}+m p^{2}(X-1)(X-2) \cdots(X-p+2)-p
$$

has Galois group $S_{p}$.
8. Compute the Galois group of $X^{5}-2$ over $\mathbb{Q}$.
9. Let $f \in \mathbb{Q}[X]$ be an irreducible quartic polynomial whose Galois group is $A_{4}$. Show that its splitting field can be written in the form $K(\sqrt{a}, \sqrt{b})$ where $K / \mathbb{Q}$ is a Galois cubic extension and $a, b \in K$. Show that the resolvent cubic of $X^{4}+6 X^{2}+8 X+9$ has Galois group $C_{3}$ and deduce that the quartic has Galois group $A_{4}$.
10. Show that the Galois group of $f(X)=X^{5}-4 X+2$ over $\mathbb{Q}$ is $S_{5}$, and determine its Galois group over $\mathbb{Q}(i)$.
11. Find the Galois group of $f(X)=X^{4}-4 X+2$ over $\mathbb{Q}$ and over $\mathbb{Q}(i)$.
12. Let $p$ be an odd prime. Show that $K=\mathbb{Q}\left(\zeta_{p}\right)$ has a unique subfield of degree 2 over $\mathbb{Q}$. Let $f(X)=\left(X^{p}-1\right) /(X-1)$. Show that $f^{\prime}\left(\zeta_{p}\right)=p \zeta_{p}^{p-1} /\left(\zeta_{p}-1\right)$ and $N_{K / \mathbb{Q}}\left(f^{\prime}\left(\zeta_{p}\right)\right)=p^{p-2}$. Compute the discriminant of $f$ and deduce that the unique quadratic subfield of $K$ is $\mathbb{Q}(\sqrt{ \pm p})$ for some choice of sign. How does the correct choice of sign depend on $p$ ?

## Further problems

13. Give an example of a field $K$ of characteristic $p>0$ and $\alpha$ and $\beta$ of the same degree over $K$ so that $K(\alpha)$ is not isomorphic to $K(\beta)$. Does such an example exist if $K$ is a finite field? Justify your answer.
14. Factor into irreducibles $X^{9}-X$ over $\mathbb{F}_{3}$, and $X^{16}-X$ over both $\mathbb{F}_{2}$ and $\mathbb{F}_{4}$.
15. Write $a_{n}(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_{q}[X]$ of degree exactly $n$.
(i) Show that an irreducible polynomial $f \in \mathbb{F}_{q}[X]$ of degree $d$ divides $X^{q^{n}}-X$ if and only if $d$ divides $n$.
(ii) Deduce that $X^{q^{n}}-X$ is the product of all irreducible monic polynomials of degree dividing $n$, and that

$$
\sum_{d \mid n} d a_{d}(q)=q^{n} .
$$

(iii) Calculate the number of irreducible polynomials of degree 6 over $\mathbb{F}_{2}$.
(iv) If you know about the Möbius function $\mu(n)$, use the Möbius inversion formula to show that

$$
a_{n}(q)=\frac{1}{n} \sum_{d \mid n} \mu(n / d) q^{d} .
$$

16. Find the Galois groups of $X^{5}-15 X+21$ and $X^{4}+X+1$ over $\mathbb{Q}$.
17. Show that the Galois group of $X^{5}+20 X+16$ over $\mathbb{Q}$ is $A_{5}$.
