Galois Theory: Example Sheet 2 of 4

1. Let F be a finite field with q elements. Find a formula in terms of q for the number of monic irreducible quadratics in $F[X]$. Deduce that F cannot be algebraically closed. Find all irreducible polynomials in $\mathbb{F}_{2}[X]$ of degree at most 4.
2. (i) Let $u=X_{1}+\omega X_{2}+\omega^{2} X_{3}$ and $v=X_{1}+\omega^{2} X_{2}+\omega X_{3}$ where $\omega=e^{2 \pi i / 3}$. Find expressions for $u^{3}+v^{3}$ and $u v$ in terms of the elementary symmetric polynomials $s_{1}=X_{1}+X_{2}+X_{3}, s_{2}=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}$ and $s_{3}=X_{1} X_{2} X_{3}$.
(ii) Express $\sum_{i \neq j} X_{i}^{3} X_{j} \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$ as a polynomial in the elementary symmetric polynomials.
3. (i) Let $f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$. Show that $f^{\prime}\left(\alpha_{i}\right)=\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)$, and deduce that $\operatorname{Disc}(f)=(-1)^{n(n-1) / 2} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)$.
(ii) Let $f(X)=X^{n}+b X+c=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$, with $n \geqslant 2$. Show that

$$
\alpha_{i} f^{\prime}\left(\alpha_{i}\right)=(n-1) b\left(\frac{-n c}{(n-1) b}-\alpha_{i}\right)
$$

and deduce that

$$
\operatorname{Disc}(f)=(-1)^{n(n-1) / 2}\left((1-n)^{n-1} b^{n}+n^{n} c^{n-1}\right)
$$

4. Show directly from the definition that any quadratic extension is normal. Give an example of a cubic extension which is normal, and another which is not normal.
5. (i) Let K be a field of characteristic $p>0$ such that every element of K is a $p^{\text {th }}$ power. Show that any irreducible polynomial over K is separable.
(ii) Deduce that if F is a finite field, then any irreducible polynomial over F is separable.
(iii) A field is said to be perfect if every finite extension of it is separable. Show that any field of characteristic zero is perfect, and that a field of characteristic $p>0$ is perfect if and only if every element is a $p^{\text {th }}$ power.
6. Let K be a field of characteristic $p>0$, and let α be algebraic over K. Show that α is inseparable over K if and only if $K(\alpha) \neq K\left(\alpha^{p}\right)$, and that if this is the case, then p divides $[K(\alpha): K]$. Deduce that if L / K is a finite inseparable extension of fields of characteristic p, then p divides $[L: K]$.
7. Let $M / L / K$ be finite extensions. Show that M is separable over K if and only if both M / L and L / K are separable extensions.
8. Let $K=\mathbb{Q}(\sqrt[3]{2}, \omega)$, where $\omega=e^{2 \pi i / 3}$. For which $c \in \mathbb{Q}$ do we have $K=\mathbb{Q}(\sqrt[3]{2}+c \omega)$?
9. Which of the quadratic extensions from Question 2 on Example Sheet 1 are Galois?
10. Let L / K be a finite Galois extension, and F, F^{\prime} intermediate fields.
(i) What is the subgroup of $\operatorname{Gal}(L / K)$ corresponding to the subfield $F \cap F^{\prime}$?
(ii) Show that if $\sigma: F \xrightarrow{\simeq} F^{\prime}$ is a K-isomorphism, then the subgroups $\operatorname{Gal}(L / F)$ and $\operatorname{Gal}\left(L / F^{\prime}\right)$ of $\operatorname{Gal}(L / K)$ are conjugate.
11. Show that $L=\mathbb{Q}(\sqrt{2}, i)$ is a Galois extension of \mathbb{Q} and determine its Galois group G. Write down the lattice of subgroups of G and the corresponding subfields of L.
12. Show that $L=\mathbb{Q}(\sqrt[4]{2}, i)$ is a Galois extension of \mathbb{Q}, and show that $\operatorname{Gal}(L / \mathbb{Q})$ is isomorphic to D_{8}, the dihedral group of order 8 . Write down the lattice of subgroups of D_{8} (be sure you have found them all!) and the corresponding subfields of L, which you should give explicitly in terms of generators, for example $F=\mathbb{Q}(\sqrt{2}, i)$ or $F=\mathbb{Q}(\sqrt[4]{2}(1+i))$. Which intermediate fields are Galois over \mathbb{Q} ?

Further problems

13. Let K be a field and $c \in K$. If m, n are coprime positive integers, show that $X^{m n}-c$ is irreducible if and only if both $X^{m}-c$ and $X^{n}-c$ are irreducible. [One way is easy. For the other, use the Tower Law.]
14. We say that α is purely inseparable over K if either $\alpha \in K$ or char $K=p>0$ and for some $n \geqslant 1, \alpha^{p^{n}} \in K$. We say that an algebraic extension L / K is purely inseparable if every element of L is purely inseparable over K.
Let L / K be a finite extension, and $L_{0}=\{\alpha \in L \mid \alpha$ is separable over $K\}$. Show that L_{0} is a subfield of L which is separable over K, and that L is purely inseparable over L_{0}.
15. Let $L=\mathbb{F}_{p}(X, Y)$ be the field of rational functions in two variables over the finite field \mathbb{F}_{p} (i.e., the field of fractions of $\left.\mathbb{F}_{p}[X, Y]\right)$. Let K be the subfield $\mathbb{F}_{p}\left(X^{p}, Y^{p}\right)$. Show that for any $f \in L$ we have $f^{p} \in K$, and deduce that L / K is not a simple extension (i.e., not of the form $K(\alpha)$).
16. (i) Let $f=g / h$ be a non-constant rational function in $K(X)$ where g, h are coprime polynomials. By finding a polynomial in $K(f)[T]$ with X as a root, and proving that it is irreducible, show that $[K(X): K(f)]=\max (\operatorname{deg} g, \operatorname{deg} h)$.
(ii) Deduce that $\operatorname{Aut}(K(X) / K) \cong \mathrm{PGL}_{2}(K)$.
17. Show that the only field homomorphism $\mathbb{R} \rightarrow \mathbb{R}$ is the identity map.
