Galois Theory: Example Sheet 1 of 4

1. Let $f \in K[X]$ be a non-zero polynomial, and let L / K be a field extension with $L=K(\alpha)$ for some $\alpha \in L$ with $f(\alpha)=0$. Show that $[L: K] \leqslant \operatorname{deg} f$, and that equality holds if and only if f is irreducible over K.
2. Let L / K be a quadratic extension, that is, a field extension of degree 2 . Show that if the characteristic of K is not 2 then $L=K(\alpha)$ for some $\alpha \in L$ with $\alpha^{2} \in K$.
Show that if the characteristic is 2 then either $L=K(\alpha)$ for some α with $\alpha^{2} \in K$, or $L=K(\alpha)$ for some α with $\alpha^{2}+\alpha \in K$.
3. Let $f(X)=X^{3}+X^{2}-2 X+1 \in \mathbb{Q}[X]$. Use Gauss's lemma to show that f is irreducible. Suppose that α has minimal polynomial f over \mathbb{Q}, and let $\beta=\alpha^{4}$. Find $a, b, c \in \mathbb{Q}$ such that $\beta=a+b \alpha+c \alpha^{2}$. Do the same for $\beta=\left(1-\alpha^{2}\right)^{-1}$.
4. Find the minimal polynomials over \mathbb{Q} of the complex numbers:

$$
\sqrt[5]{3}, \quad i+\sqrt{2}, \quad \sin (2 \pi / 5), \quad e^{i \pi / 6}-\sqrt{3}
$$

5. (i) Let L / K be a finite extension of prime degree. Show that there is no intermediate extension $K \varsubsetneqq F \varsubsetneqq L$.
(ii) Let α be such that $[K(\alpha): K]$ is odd. Show that $K(\alpha)=K\left(\alpha^{2}\right)$.
6. Let L / K be a finite extension and $f \in K[X]$ an irreducible polynomial of degree $d>1$. Show that if d and $[L: K]$ are coprime then f has no roots in L.
7. Suppose that L / K is an extension with $[L: K]=3$. Show that for any $x \in L$ and $y \in L \backslash K$ we can find $p, q, r, s \in K$ such that

$$
x=\frac{p+q y}{r+s y} .
$$

[Hint: Consider four appropriate elements of the 3-dimensional vector space L.]
8. (i) Let K be a field, and $f=g / h \in K(X)$ a non-constant rational function. Find a polynomial in $K(f)[T]$ which has X as a root.
(ii) Let L be a subfield of $K(X)$ containing K. Show that either $K(X) / L$ is finite, or $L=K$. Deduce that the only elements of $K(X)$ which are algebraic over K are constants.
(iii) Find $\beta, \gamma \in \mathbb{C}$ such that $\mathbb{Q}(\beta, \gamma) / \mathbb{Q}$ is not a simple extension, i.e., cannot be written as $\mathbb{Q}(\alpha)$ for any α.
9. Let K and L be subfields of a field M such that M / K is finite. Denote by $K L$ the set of all finite sums $\sum x_{i} y_{i}$ with $x_{i} \in K$ and $y_{i} \in L$. Show that $K L$ is a subfield of M, and that

$$
[K L: K] \leqslant[L: K \cap L] .
$$

10. Show that a regular 7 -gon is not constructible by ruler and compass.
11. Find a splitting field K / \mathbb{Q} for each of the following polynomials, and calculate $[K: \mathbb{Q}]$ in each case:

$$
X^{4}-5 X^{2}+6, \quad X^{4}-7, \quad X^{8}-1, \quad X^{3}-3 X+1, \quad X^{4}+4 .
$$

[Hint: We saw in lectures that $2 \cos (2 \pi / 9)$ is a root of $X^{3}-3 X+1$.]
12. Let $f \in K[X]$ be a polynomial of degree n. Let L be a splitting field for f over K. Show that $[L: K] \leqslant n$! and that if f is irreducible then $[L: K] \geqslant n$.

Further problems

13. Let R be a ring, and K a subring of R which is a field. Show that if R is an integral domain and $\operatorname{dim}_{K} R<\infty$ then R is a field. Show that the result fails without the assumption that R is a domain.
14. (i) Let α be algebraic over K. Show that there are only finitely many intermediate fields $K \subset F \subset K(\alpha)$. [Hint: Consider the minimal polynomial of α over F.]
(ii) Show that if L / K is a finite extension of infinite fields for which there exist only finitely many intermediate subfields $K \subset F \subset L$, then $L=K(\alpha)$ for some $\alpha \in L$.
15. Let L / K be a field extension, and $\phi: L \rightarrow L$ a K-homomorphism. Show that if L / K is algebraic then ϕ is an isomorphism. Does this hold without the hypothesis L / K algebraic?
16. Let L / K be an extension, and $\alpha, \beta \in L$ transcendental over K. Show that α is algebraic over $K(\beta)$ if and only if β is algebraic over $K(\alpha)$. [The elements α and β are then said to be algebraically dependent over K.]
17. Show that for any $n>1$ the polynomial $X^{n}+X+3$ is irreducible over \mathbb{Q}.
