
Example sheet 4, Galois Theory, 2019.

1. (i) Let K be a field, p a prime and K ′ = K(ζ) for some primitive pth root of unity ζ. Let a ∈ K. Show
that xp− a is irreducible over K if and only if it is irreducible over K ′. Is the result true if p is not assumed
to be prime?

(ii) If K contains a primitive nth root of unity, then we know that xn − a is reducible over K if and only if
a is a dth power in K for some divisor d > 1 of n. Show that this need not be true if K doesn’t contain a
primitive nth root of unity.

2. Let K be a field containing a primitive mth root of unity for some m > 1. Let a, b ∈ K such that the
polynomials f = xm − a, g = xm − b are irreducible. Show that f and g have the same splitting field if and
only if b = cmar for some c ∈ K and r ∈ N with gcd(r,m) = 1.

3. Let f be an irreducible separable quartic, and g its resolvant cubic. Show that the discriminants of f and
g are equal.

4. Let f ∈ Q[x] be an irreducible quartic polynomial whose Galois group is A4. Show that its splitting field
can be written in the form K(

√
a,
√
b) where K/Q is a Galois cubic extension and a, b ∈ K.

5. Show that the discriminant of x4 + rx+ s is −27r4 + 256s3. [It is a symmetric polynomial of degree 12,
hence a linear combination of r4 and s3. By making good choices for r, s, determine the coefficients.]

6. Let f(x) = x4 + 8x+ 12 ∈ Q[x]. Compute the discrimininant and resolvant cubic g of f . Show f and g
are both irreducible, and that the Galois group of f is A4.

7. Determine the Galois group of the following polynomials in Q[x]. x4 + 4x2 + 2, x4 + 2x2 +
4, x4 + 4x2 − 5, x4 − 2, x4 + 2, x4 + x+ 1, x4 + x3 + x2 + x+ 1

8. Let ζ = e2πi/3, let α = 3

√
(a+ b

√
2) and let L be the splitting field for an irreducible polynomial for α

over Q(ζ). Determine the possible Galois groups of L over Q(ζ).

9. Determine whether the following nested radicals can be written in terms of unnested ones, and if so, find
an expression.√

(2 +
√

11),
√

(6 +
√

11),
√

(11 + 6
√

2),
√

(11 +
√

6).

10. (i) Show that the Galois group of f(x) = x5 − 4x+ 2 over Q is S5, and determine its Galois group over
Q(i).

(ii) Find the Galois group of f(x) = x4 − 4x+ 2 over Q and over Q(i).

11. In this question we determine the structure of the groups (Z/mZ)∗.

(i) Let p be an odd prime. Show that for every n ≥ 2, (1 + p)p
n−2 ≡ 1 + pn−1 (mod pn). Deduce that 1 + p

has order pn−1 in (Z/pnZ)∗.

(ii) If b ∈ Z with (p, b) = 1 and b has order p− 1 in (Z/pZ)∗ and n ≥ 1, show that bp
n−1

has order p− 1 in
(Z/pnZ)∗. Deduce that for n ≥ 1 and p an odd prime, (Z/pnZ)∗ is cyclic.

(iii) Show that for every n ≥ 3, 52
n−3 ≡ 1 + 2n−1 (mod 2n). Deduce that (Z/2nZ)∗ is generated by 5 and

−1, and is isomorphic to Z/2n−2Z× Z/2Z, for any n ≥ 2.

(iv) Use the Chinese Remainder Theorem to deduce the structure of (Z/mZ)∗ in general.

(v) Dirichlet’s theorem on primes in arithmetic progressions states that if a and b are coprime positive
integers, then the set {an+ b | n ∈ N} contains infinitely many primes. Use this, the structure theorem for
finite abelian groups, and part (iv) to show that every finite abelian group is isomorphic to a quotient of
(Z/mZ)∗ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension
K/Q. [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.]

(vi) Find an explicit α for which Q(α)/Q is Galois with Galois group Z/23Z.
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12. Here and in the next few questions, ζm = e2πi/m for a positive integer m.

(i) Find the quadratic subfields of Q(ζ15).

(ii) Show that Q(ζ21) has exactly three subfields of degree 6 over Q. Show that one of them is Q(ζ7), one is
real, and the other is a cyclic extension K/Q(ζ3). Find an explicit a ∈ Q(ζ3) such that K = Q(ζ3, 3

√
a).

13. Compute the discriminant of xp
n − 1.

14. Show Q(ζm).Q(ζn) = Q(ζmn) if m and n are relatively prime.

15. In this question you will construct the quadratic subfield of Q(ζp) using the first method sketched in
lectures.

(i) Let p be an odd prime. Show that if r ∈ Z then
∑

0≤s<p ζ
rs
p equals p if r ≡ 0 (mod p) and equals 0

otherwise.

(ii) Let τ =
∑

0≤n<p ζ
n2

p . Show that ττ = p. Show also that τ is real if −1 is a square mod p, and otherwise
τ is purely imaginary (i.e. τ/i ∈ R).

(iii) Let L = Q(ζp). Show that L has a unique subfield K which is quadratic over Q, and that K = Q(
√
εp)

where ε = (−1)(p−1)/2.

(iv) Show that Q(ζm) ⊂ Q(ζn) if m|n. Deduce that if 0 6= m ∈ Z then Q(
√
m) is a subfield of Q(ζ4|m|).

[This is a simple case of the Kronecker-Weber Theorem, which says that every abelian extension of Q is a
subfield of a suitable Q(ζm).]

16. For which n ∈ N is it possible to trisect an angle of size 2π/n using only straightedge and compass?

17. (i) Let G be a finite group, and N a normal subgroup. Show that G is solvable if and only if N and
G/N are solvable.

(ii) For a groupG, the derived subgroupGder is the subgroup generated by all elements {xyx−1y−1 | x, y ∈ G}.
Show that Gder is normal, and that G/Gder is abelian.

Show that if G is a simple group, then G = Gder. [The converse is not true.]

Let G0 = G, and for i > 0, set Gi = (Gi−1)der. Show that G is solvable if and only if there is an i such that
Gi = 1.

iii) Let G be the group of invertible n by n upper triangular matrices, with coefficients in a finite field K.
Show that G is solvable.

18. (i) Let D2n be the dihedral group of order 2n, and N = Z/nZ its cyclic subgroup of rotations. Show
that D2n is isomorphic to a semidirect product of N and Z/2Z.

(ii) Let G = D8, V = Z/2Z × Z/2Z. Show V is a normal subgroup of G, with quotient Z/2Z. Is G a
semidirect product of V and Z/2Z?

(iii) Let G be a group with normal subgroup N . Show that G is isomorphic to a semidirect product of G
and G/N if and only if there is a subgroup H of G isomorphic to G/N such that H ∩N = 1, HN = G.

19. Show that Q(

√
2 +

√
2 +
√

2) is an abelian extension of Q, and determine its Galois group.

20. Write cos(2π/17) explicitly in terms of radicals.

21. Show that for any n > 1 the polynomial xn + x + 3 is irreducible over Q. Determine its Galois group
for n ≤ 5.
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