1. (i) Let K be a field, p a prime and $K' = K(\zeta)$ for some primitive p^{th} root of unity ζ. Let $a \in K$. Show that $x^p - a$ is irreducible over K if and only if it is irreducible over K'. Is the result true if p is not assumed to be prime?

(ii) If K contains a primitive n^{th} root of unity, then we know that $x^n - a$ is reducible over K if and only if a is a d^{th} power in K for some divisor $d > 1$ of n. Show that this need not be true if K doesn’t contain a primitive n^{th} root of unity.

2. Let K be a field containing a primitive m^{th} root of unity for some $m > 1$. Let $a, b \in K$ such that the polynomials $f = x^m - a, g = x^m - b$ are irreducible. Show that f and g have the same splitting field if and only if $b = c^m a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with $\gcd(r, m) = 1$.

3. Let f be an irreducible separable quartic, and g its resolvent cubic. Show that the discriminants of f and g are equal.

4. Let $f \in \mathbb{Q}[x]$ be an irreducible quartic polynomial whose Galois group is A_4. Show that its splitting field can be written in the form $K(\sqrt{a}, \sqrt{b})$ where K/\mathbb{Q} is a Galois cubic extension and $a, b \in K$.

5. Show that the discriminant of $x^4 + rx + s = -27r^4 + 256s^3$. It is a symmetric polynomial of degree 12, hence a linear combination of r^4 and s^3. By making good choices for r, s, determine the coefficients.

6. Let $f(x) = x^4 + 8x + 12 \in \mathbb{Q}[x]$. Compute the discriminant and resolvent cubic g of f. Show f and g are both irreducible, and that the Galois group of f is A_4.

7. Determine the Galois group of the following polynomials in $\mathbb{Q}[x]$. $x^4 + 4x^2 + 2, \quad x^4 + 2x^2 + 4, \quad x^4 + 4x^2 - 5, \quad x^4 - 2, \quad x^4 + 2, \quad x^4 + x + 1, \quad x^4 + x^3 + x^2 + x + 1$

8. Let $\zeta = e^{2\pi i/3}$, let $\alpha = \sqrt[3]{(a + b\sqrt{2})}$ and let L be the splitting field for an irreducible polynomial for α over $\mathbb{Q}(\zeta)$. Determine the possible Galois groups of L over $\mathbb{Q}(\zeta)$.

9. Determine whether the following nested radicals can be written in terms of unnested ones, and if so, find an expression.

$\sqrt{2 + \sqrt{1}}, \quad \sqrt{6 + \sqrt{1}}, \quad \sqrt{11 + 6\sqrt{2}}, \quad \sqrt{11 + \sqrt{6}}$.

10. (i) Show that the Galois group of $f(x) = x^5 - 4x + 2$ over \mathbb{Q} is S_5, and determine its Galois group over $\mathbb{Q}(i)$.

(ii) Find the Galois group of $f(x) = x^4 - 4x + 2$ over \mathbb{Q} and over $\mathbb{Q}(i)$.

11. In this question we determine the structure of the groups $(\mathbb{Z}/m\mathbb{Z})^*$.

(i) Let p be an odd prime. Show that for every $n \geq 2$, $(1 + p)^{p^{n-2}} \equiv 1 + p^{n-1} \pmod{p^n}$. Deduce that $1 + p$ has order p^{n-1} in $(\mathbb{Z}/p^n\mathbb{Z})^*$.

(ii) If $b \in \mathbb{Z}$ with $(p, b) = 1$ and b has order $p - 1$ in $(\mathbb{Z}/p^n\mathbb{Z})^*$ and $n \geq 1$, show that $b^{p^{n-1}}$ has order $p - 1$ in $(\mathbb{Z}/p^n\mathbb{Z})^*$. Deduce that for $n \geq 1$ and p an odd prime, $(\mathbb{Z}/p^n\mathbb{Z})^*$ is cyclic.

(iii) Show that for every $n \geq 3$, $5^{2^{n-3}} \equiv 1 + 2^{n-1} \pmod{2^n}$. Deduce that $(\mathbb{Z}/2^n\mathbb{Z})^*$ is generated by 5 and -1, and is isomorphic to $\mathbb{Z}/2^{n-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, for any $n \geq 2$.

(iv) Use the Chinese Remainder Theorem to deduce the structure of $(\mathbb{Z}/m\mathbb{Z})^*$ in general.

(v) Dirichlet’s theorem on primes in arithmetic progressions states that if a and b are coprime positive integers, then the set $\{an + b \mid n \in \mathbb{N}\}$ contains infinitely many primes. Use this, the structure theorem for finite abelian groups, and part (iv) to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/m\mathbb{Z})^*$ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension K/\mathbb{Q}. [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.]

(vi) Find an explicit α for which $\mathbb{Q}(\alpha)/\mathbb{Q}$ is Galois with Galois group $\mathbb{Z}/23\mathbb{Z}$.

Example sheet 4, Galois Theory, 2019.
12. Here and in the next few questions, \(\zeta_m = e^{2\pi i/m} \) for a positive integer \(m \).

(i) Find the quadratic subfields of \(\mathbb{Q}(\zeta_{15}) \).

(ii) Show that \(\mathbb{Q}(\zeta_{21}) \) has exactly three subfields of degree 6 over \(\mathbb{Q} \). Show that one of them is \(\mathbb{Q}(\zeta_7) \), one is real, and the other is a cyclic extension \(K/\mathbb{Q}(\zeta_3) \). Find an explicit \(a \in \mathbb{Q}(\zeta_3) \) such that \(K = \mathbb{Q}(\zeta_3, \sqrt[3]{a}) \).

13. Compute the discriminant of \(x^n - 1 \).

14. Show \(\mathbb{Q}(\zeta_m) \mathbb{Q}(\zeta_n) = \mathbb{Q}(\zeta_{mn}) \) if \(m \) and \(n \) are relatively prime.

15. In this question you will construct the quadratic subfield of \(\mathbb{Q}(\zeta_n) \) using the first method sketched in lectures.

(i) Let \(p \) be an odd prime. Show that if \(r \in \mathbb{Z} \) then \(\sum_{0 \leq s < p} \zeta_p^{sr} \) equals \(p \) if \(r \equiv 0 \mod p \) and equals 0 otherwise.

(ii) Let \(\tau = \sum_{0 \leq n < p} \zeta_p^{n^2} \). Show that \(\tau \tau = p \). Show also that \(\tau \) is real if \(-1 \) is a square mod \(p \), and otherwise \(\tau \) is purely imaginary (i.e. \(\tau / i \in \mathbb{R} \)).

(iii) Let \(L = \mathbb{Q}(\zeta_p) \). Show that \(L \) has a unique subfield \(K \) which is quadratic over \(\mathbb{Q} \), and that \(K = \mathbb{Q}(\sqrt[p]{\varphi}) \) where \(\varphi = (-1)^{(p-1)/2} \).

(iv) Show that \(\mathbb{Q}(\zeta_m) \subset \mathbb{Q}(\zeta_n) \) if \(m \mid n \). Deduce that if \(0 \neq m \in \mathbb{Z} \) then \(\mathbb{Q}(\sqrt{m}) \) is a subfield of \(\mathbb{Q}(\zeta_{4|m}) \). [This is a simple case of the Kronecker-Weber Theorem, which says that every abelian extension of \(\mathbb{Q} \) is a subfield of a suitable \(\mathbb{Q}(\zeta_m) \).]

16. For which \(n \in \mathbb{N} \) is it possible to trisect an angle of size \(2\pi/n \) using only straightedge and compass?

17. (i) Let \(G \) be a finite group, and \(N \) a normal subgroup. Show that \(G \) is solvable if and only if \(N \) and \(G/N \) are solvable.

(ii) For a group \(G \), the derived subgroup \(G^{der} \) is the subgroup generated by all elements \(\{ xyx^{-1}y^{-1} \mid x, y \in G \} \). Show that \(G^{der} \) is normal, and that \(G/G^{der} \) is abelian. Show that if \(G \) is a simple group, then \(G = G^{der} \). [The converse is not true.]

Let \(G_0 = G \), and for \(i > 0 \), set \(G_i = (G_{i-1})^{der} \). Show that \(G \) is solvable if and only if there is an \(i \) such that \(G_i = 1 \).

(iii) Let \(G \) be the group of invertible \(n \) by \(n \) upper triangular matrices, with coefficients in a finite field \(K \). Show that \(G \) is solvable.

18. (i) Let \(D_{2n} \) be the dihedral group of order \(2n \), and \(N = \mathbb{Z}/n\mathbb{Z} \) its cyclic subgroup of rotations. Show that \(D_{2n} \) is isomorphic to a semidirect product of \(N \) and \(\mathbb{Z}/2\mathbb{Z} \).

(ii) Let \(G = D_8 \), \(V = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \). Show \(V \) is a normal subgroup of \(G \), with quotient \(\mathbb{Z}/2\mathbb{Z} \). Is \(G \) a semidirect product of \(V \) and \(\mathbb{Z}/2\mathbb{Z} \)?

(iii) Let \(G \) be a group with normal subgroup \(N \). Show that \(G \) is isomorphic to a semidirect product of \(G \) and \(G/N \) if and only if there is a subgroup \(H \) of \(G \) isomorphic to \(G/N \) such that \(H \cap N = 1 \), \(HN = G \).

19. Show that \(\mathbb{Q}(\sqrt{2 + \sqrt{2 + \sqrt{2}}} \) is an abelian extension of \(\mathbb{Q} \), and determine its Galois group.

20. Write \(\cos(2\pi/17) \) explicitly in terms of radicals.

21. Show that for any \(n > 1 \) the polynomial \(x^n + x + 3 \) is irreducible over \(\mathbb{Q} \). Determine its Galois group for \(n \leq 5 \).