EXAMPLE SHEET 3

1. Let $K \leq L$ be a finite Galois extension, and M and M' be intermediate fields.
 (i) What is the subgroup of $\text{Gal}(L/K)$ corresponding to the subfield $M \cap M'$?
 (ii) Show that if $\sigma : M \rightarrow M'$ is a K-isomorphism, then the subgroups $\text{Gal}(L/M)$ and $\text{Gal}(L/M')$ of $\text{Gal}(L/K)$ are conjugate.

2. Let p be a prime and let F be the field of order p. Let $L = F(X)$. Let a be an integer with $1 \leq a < p$, and let $\sigma \in \text{Aut}_F(L)$ be the unique K-automorphism such that $\sigma(X) = aX$. Determine the subgroup $G \leq \text{Aut}_K(L)$ generated by σ, and also find its fixed field L^G.

3. Let $K \leq L$ be a Galois extension with Galois group $G = \{\sigma_1, \ldots, \sigma_n\}$. Show that $\{\alpha_1, \ldots, \alpha_n\}$ is a K-basis for L if and only if $\det \sigma_i(\alpha_j)$ is non-zero.

4. (i) Let p be a prime. Show that any transitive subgroup of S_p containing both a p-cycle and a transposition is equal to S_p.
 (ii) Prove that the Galois group of $f(t) = t^5 + 2t + 6$ over the rationals is S_5.
 (iii) Show that for a sufficiently large integer m, that $f(t) = t^p + mp^2(t - 1)(t - 2)\ldots(t - p + 2) - p$ has Galois group S_p over the rationals.

5. (i) Let $f(t) = \Pi_{i=1}^n (t - \alpha_i)$. Show that $f'(\alpha_i) = \Pi_{j \neq i} (\alpha_i - \alpha_j)$ and deduce that the discriminant of $f(t)$ is $(-1)^{n(n-1)/2} \Pi_{i=1}^n f'(\alpha_i)$.
 (ii) Let $f(t) = t^n + bt + c = \Pi_{i=1}^n (t - \alpha_i)$ with n at least 2. Show that the discriminant of $f(t)$ is $(-1)^{n(n-1)/2}((1-n)^{n-1}b^n + n^n c^{n-1})$.

6. Find the Galois group of $f(t) = t^4 + t^3 + 1$ over each of the finite fields F of order 2, 3 and 4.

7. (i) Find a monic integral polynomial of degree 4 whose Galois group is V_4, the subgroup of S_4 whose elements are the identity and the double transpositions.
(ii) Let \(f(t) \) be a monic integral polynomial which is separable of degree \(n \). Suppose that the Galois group of \(f(t) \) over the rationals does not contain an \(n \)-cycle. Prove that the reduction of \(f(t) \) modulo \(p \) is reducible for every prime \(p \).

(iii) Hence exhibit an irreducible integral polynomial whose reduction mod \(p \) is reducible for every prime \(p \).

8. Compute the 12th cyclotomic polynomial \(\Phi_{12}(t) \) over the rationals.

9. Let \(L \) be the 15th cyclotomic extension of the rationals. Find all the degree two extensions of the rationals contained in \(L \).

10. Let \(p \) be a prime with \((m,p) = 1 \). Let \(\Phi_m(t) \) be the \(m \)th cyclotomic polynomial, and consider it (mod \(p \)). Write \(\Phi_m(t) = f_1(t) \ldots f_r(t) \) to be a factorisation (mod \(p \)), where each \(f_i(t) \) is irreducible. Show that for each \(i \) the degree of \(f_i(t) \) is equal to the order of \(p \) in the unit group of the integers (mod \(m \)). Use this to write down an irreducible polynomial of degree 10 in \(F[t] \) where \(F \) is the field of two elements.

11. Let \(\Phi_n(t) \) be the \(n \)th cyclotomic polynomial over the rationals. Show that
 (i) If \(n \) is odd then \(\Phi_{2n}(t) = \Phi_n(-t) \).
 (ii) If \(p \) is a prime dividing \(n \) then \(\Phi_{np}(t) = \Phi_n(t^p) \).
 (iii) If \(p \) and \(q \) are distinct primes then the coefficients of \(\Phi_{pq}(t) \) are either +1, 0 or -1.
 (iv) If \(n \) is not divisible by at least three distinct odd primes then the coefficients of \(\Phi_n(t) \) are -1, 0 or +1.
 (v) \(\Phi_{3 \times 5 \times 7}(t) \) has at least one coefficient which is not -1, 0 or +1.

12. Let \(K \) be the field of rationals, and let \(L \) be the splitting field of \(f(t) = t^4 - 2 \) over \(K \). Show that \(\text{Gal}(L/K) \) is isomorphic to the dihedral group \(D_8 \) of order 8.

brookes@dpmms.cam.ac.uk