1. Let $K \leq L$ be a finite Galois extension, and M and M' be intermediate fields.
 (i) What is the subgroup of $\text{Gal}(L/K)$ corresponding to the subfield $M \cap M'$?
 (ii) Show that if $\sigma : M \to M'$ is a K-isomorphism, then the subgroups $\text{Gal}(L/M)$ and $\text{Gal}(L/M')$ of $\text{Gal}(L/K)$ are conjugate.
2. Let K be the field of rationals, and let L be the splitting field of $f(t) = t^4 - 2$ over K.
 Show that $\text{Gal}(L/K)$ is isomorphic to the dihedral group D_8 of order 8. Write down the lattice of subgroups of D_8 and the corresponding subfields of L. Which intermediate fields are Galois over K?
3. (i) Let p be a prime. Show that any transitive subgroup of S_p containing both a p-cycle and a transposition is equal to S_p.
 (ii) Prove that the Galois group of $f(t) = t^5 + 2t + 6$ over the rationals is S_5.
 (iii) Show that for a sufficiently large integer m, that $f(t) = t^p + mp^2(t-1)(t-2)\ldots(t-p+2) - p$ has Galois group S_p over the rationals.
4. Let $K \leq L$ be a Galois extension with Galois group $G = \{\sigma_1, \ldots, \sigma_n\}$. Show that $\{\alpha_1, \ldots, \alpha_n\}$ is a K-basis for L if and only if $\det\sigma_i(\alpha_j)$ is non-zero.
5. (i) Let $f(t) = \prod_{i=1}^{n}(t-\alpha_i)$. Show that $f'(\alpha_i) = \prod_{j \neq i}(\alpha_i - \alpha_j)$ and deduce that the discriminant of $f(t)$ is $(1)^{n(n-1)/2}\prod_{i=1}^{n}f'(\alpha_i)$.
 (ii) Let $f(t) = t^n + bt + c = \prod_{i=1}^{n}(t-\alpha_i)$ with n at least 2. Show that the discriminant of $f(t)$ is $(-1)^{n(n-1)/2}(1-n)^{n-1}b^n + n^nc^{n-1})$.
6. Find the Galois group of $f(t) = t^4 + t^3 + 1$ over each of the finite fields F of order 2, 3 and 4.
7. (i) Find a monic integral polynomial of degree 4 whose Galois group is V_4, the subgroup of S_4 whose elements are the identity and the double transpositions.
(ii) Let \(f(t) \) be a monic integral polynomial which is separable of degree \(n \). Suppose that the Galois group of \(f(t) \) over the rationals does not contain an \(n \)-cycle. Prove that the reduction of \(f(t) \) modulo \(p \) is reducible for every prime \(p \).

(iii) Hence exhibit an irreducible integral polynomial whose reduction mod \(p \) is reducible for every prime \(p \).

8. (i) Let \(p \) be an odd prime, and let \(K \) and \(F \) be the fields of \(p \) and \(p^n \) elements respectively. Let \(x \in F \). Show that \(x \in K \) if and only if \(x^p = x \) and that \(x + x^{-1} \in K \) if and only if either \(x^p = x \) or \(x^p = x^{-1} \).

(ii) Apply (i) to a root of \(t^2 + 1 \) in a suitable extension of \(K \) to show that \(-1\) is a square in \(K \) if and only if \(p = 1 \mod 4 \).

(iii) Show that \(x^4 = -1 \) if and only if \((x + x^{-1})^2 = 2 \). Deduce that \(2 \) is a square in \(K \) if and only if \(p = 1 \) or \(p = -1 \mod 8 \).

9. Let \(p \) be a prime and let \(F \) be the field of order \(p \). Let \(L = F(X) \). Let \(a \) be an integer with \(1 \leq a < p \), and let \(\sigma \in \text{Aut}_F(L) \) be the unique \(K \)-automorphism such that \(\sigma(X) = aX \). Determine the subgroup \(G \leq \text{Aut}_K(L) \) generated by \(\sigma \), and also find its fixed field \(L^G \).

10. Compute the Galois group of \(f(t) = t^5 - 2 \) over the rationals.

brookes@dpmms.cam.ac.uk