(1) Let \(h = f/g \) be a non-constant rational function in \(K(t) \) where \(f, g \) are co-prime polynomials. Show that the polynomial \(f(z) - hg(z) \) is irreducible as an element of \(K(h)[z] \). Hence deduce that \([K(t):K(h)] = \max\{\deg(f),\deg(g)\} \). (Hint: Gauss’s Lemma.)

If \(\varphi \in \text{Aut}_K(L) \) where \(L = K(t) \), show that there exist \(a, b, c, d \in K \) with \(ad \neq bc \) such that \(\varphi(t) = (at + b)/(ct + d) \), and conversely that such elements of \(K \) do determine elements of \(\text{Aut}_K(L) \).

(2) Suppose that \(K \subseteq L \) is a Galois extension with \(G = \text{Gal}(L/K) \) and let \(\alpha \in L \). Show that \(L = K(\alpha) \) if and only if the images of \(\alpha \) under the elements of \(G \) are distinct.

(3) Suppose that \(K \subseteq L \) is a Galois extension with Galois group \(\text{Gal}(L/K) = \{ \varphi_1, \ldots, \varphi_n \} \). Show that \{\(\beta_1, \ldots, \beta_n \}\} is a basis for \(L \) as a \(K \)-vector space if and only if \(\det[\varphi(\beta_j)]_{1 \leq i,j \leq n} \) is not zero.

(4) Express \(\sum_{i \neq j} t_i^3 t_j \in K(t_1, \ldots, t_n) \) as a polynomial in the elementary symmetric polynomials.

(5) Let \(L = K(t) \). We define maps \(\varphi \) and \(\psi \) by \(\varphi(h(t)) = h(1/t) \) and \(\psi(h(t)) = h(1 - 1/t) \) for \(h \in K(t) \). Show that \(\varphi, \psi \in \text{Aut}_K(L) \) and that they determine an action of \(S_3 \) on \(L \). Show that the corresponding fixed field is just \(K(g) \), where \(g(t) = \frac{(t^2 - t + 1)^3}{t^2(1-t)^2} \).

(6) Let \(L \) be the 15-th cyclotomic extension of \(\mathbb{Q} \). Find all the degree two extensions of \(\mathbb{Q} \) contained in \(L \).

(7) Reduction mod \(p \). Let \(f \in \mathbb{Z}[t] \) with no repeated roots and write \(f = t^n - a_1 t^{n-1} + a_2 t^{n-2} - \cdots + (-1)^n a_n \). Let \(p \) be a prime number and assume \(\bar{f} \), the image of \(f \) in \(\mathbb{F}_p[t] \), also has no repeated roots. In several steps we show \(G = \text{Gal}(\mathbb{E}/\mathbb{F}_p) \) embeds into \(G = \text{Gal}(E/\mathbb{Q}) \) where \(E \) (resp. \(E \)) is the splitting field of \(\bar{f} \) (resp. \(f \)) over \(\mathbb{F}_p \) (resp. \(\mathbb{Q} \)).

Let \(x_1, \ldots, x_n \) be variables and \(e_1, \ldots, e_n \) the symmetric polynomials in the \(x_i \). Let \(A = \mathbb{Z}[e_1, \ldots, e_n], B = \mathbb{Z}[x_1, \ldots, x_n], L = \text{fraction field of } A, \) and \(F = \text{fraction field of } B. \) For \(\sigma \in S_n \) define \(R_{\sigma} = t - x_{\sigma(1)} u_1 - \cdots - x_{\sigma(n)} u_n \) where the \(u_i \) are a new set of variables. Put \(R = \prod_{\sigma \in S_n} R_{\sigma} \).

(i) Considering \(R \) as an element of \(B[u_1, \ldots, u_n, t] \), show that its coefficients belong to \(B \cap L \). For the ambitious: show that in fact these coefficients belong to \(A \) (we will use this fact in the steps below).

(ii) Let \(\text{Root}_f(E) = \{ \alpha_1, \ldots, \alpha_n \} \) and define a ring homomorphism \(\theta: B \to E \) by \(\theta(x_i) = \alpha_i \). Show that \(\theta \) restricts to a homomorphism \(A \to \mathbb{Z} \) sending \(e_i \) to \(\alpha_i \). Denoting the induced homomorphism \(B[u_1, \ldots, u_n, t] \to E[u_1, \ldots, u_n, t] \) again by \(\theta \), deduce that \(\theta(R) \in \mathbb{Z}[u_1, \ldots, u_n, t] \).
(iii) Let P be an irreducible factor of $\theta(R)$ in $\mathbb{Q}[u_1, \ldots, u_n, t]$. Assume $\theta(R_\sigma)P$ in $E[u_1, \ldots, u_n, t]$ for some σ. Show that $P = \theta(R_{G_\sigma}) := \prod_{\tau \in G} \theta(R_{\tau \sigma})$ where we consider $G = \text{Gal}(L/\mathbb{Q}) \leq S_n$. (So the irreducible factors of $\theta(R)$ correspond to the cosets of G in S_n.)

(iv) Reprove (ii) and (iii) by replacing f with \tilde{f}, that is, by considering $\text{Root}(\tilde{f})$ and defining a homomorphism $\theta: B \to E$ which restricts to a homomorphism $A \to \mathbb{F}_p$, and by considering the irreducible factors of $\theta(R)$, etc. Finally deduce that \tilde{G} can be identified with a subgroup of G.

(8) Show that $t^4 + 1$ is reducible over every finite field \mathbb{F}_q. (Hint: use the previous problem and consider the Frobenius) Let p be an odd prime. By considering the splitting field of $t^2 + 1$ over \mathbb{F}_p, show that -1 is a quadratic residue mod p iff $p \equiv 1 \pmod{4}$. If ζ a root of $t^4 + 1$, show that $(\zeta + \zeta^{-1})^2 = 2$. Hence show that 2 is a quadratic residue mod p iff $p \equiv \pm 1 \pmod{8}$.

(9) Show that the minimal polynomial of $\sqrt[3]{3} + \sqrt[5]{5}$ over \mathbb{Q} is reducible modulo p for all primes p.

(10) Let L be the splitting field of $t^3 - 3t + c$ over \mathbb{Q}. Find the Galois group $\text{Gal}(L/\mathbb{Q})$ when $c = 1$ and 3. What happens when $c = 2$?

(11) Consider the polynomial $f = t^3 + 3t^2 - 1$ over \mathbb{Q}. Show that there exist $a \in \mathbb{Q}$ and $a \in \mathbb{Q}(\sqrt[3]{a})$ such that f splits over $L = \mathbb{Q}(\sqrt[3]{a})(\sqrt[5]{a})$.

(12) Show that $\mathbb{Q}(\sqrt[3]{2} + \sqrt[5]{2})$ is a Galois extension of \mathbb{Q} and find its Galois group. Optional: show that $\mathbb{Q}(\sqrt[3]{2} + \sqrt[5]{2})$ is a Galois extension of \mathbb{Q}, and find its Galois group.

(13) Show that $t^4 + t^2 + t + 1$ is irreducible over \mathbb{Q}, and find the Galois group of its splitting field over \mathbb{Q}.

(14) Let $f \in K[X]$ be an irreducible separable quartic and L its splitting field over K. Consider the Galois group $\text{Gal}(L/K)$ as a subgroup $G \leq S_4$. Let $V = \{(1, (12)(34), (13)(24), (14)(23))\}$. Show that $G \cap V$ is either V or a subgroup of index 2 in V. In both cases, determine the various possibilities for G.

(15) Let L be the splitting field of $t^5 - 2$ over \mathbb{Q}. Investigate the Galois group $\text{Gal}(L/\mathbb{Q})$.

(16) Suppose p is an odd prime, $\mu = \exp(2\pi i/p)$, and let $L = \mathbb{Q}(\mu)$. If F denotes the corresponding cyclotomic polynomial Φ_p, show that $F'(\mu) = p\mu^{p-1}/(\mu - 1)$. Prove that the norm $N_{L/\mathbb{Q}}(F'(\mu)) = p^{p-2}$.

(17) Optional: Let p_1, p_2, \ldots, p_n denote the first n primes, and let $L = \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$. Show that this is a Galois extension of degree 2^n with Galois group isomorphic to $(\mathbb{Z}/(2))^n$.