(1) Let \(K \) be a finite field. By considering the multiplicative group \(K^\times \), or otherwise, write down a non-constant polynomial over \(K \) which does not have a root in \(K \). Deduce that \(K \) cannot be algebraically closed.

(2) Let \(K \) be a field and \(\overline{K} \) its algebraic closure. Assume \(K \subseteq L \) is a finite field extension. Show that \(L \) is \(K \)-isomorphic to some subfield of \(\overline{K} \).

(3) Let \(K_1 \) and \(K_2 \) be algebraically closed fields of the same characteristic. Show that either \(K_1 \) is isomorphic to a subfield of \(K_2 \) or \(K_2 \) is isomorphic to a subfield of \(K_1 \).

(4) Find an example of a field extension \(K \subseteq L \) which is normal but not separable.

(5) Let \(K \subseteq L \) be a field extension with \([L : K] = 2 \). Show that the extension is normal.

(6) Find finite field extensions \(K \subseteq F \subseteq L \) such that \(K \subseteq F \) and \(F \subseteq L \) are normal but \(K \subseteq L \) is not normal.

(7) Let \(L \) be the splitting field of \(t^3 - 2 \) over \(\mathbb{Q} \). Find a subgroup of \(\text{Gal}(L/\mathbb{Q}) \) which is not a normal subgroup.

(8) Let \(K \subseteq L \) be a finite Galois extension, and \(F, M \) intermediate fields. What is the subgroup of \(\text{Gal}(L/K) \) corresponding to the subfield \(F \cap M \)? Show that if there is a \(K \)-isomorphism \(F \to M \), then the subgroups \(\text{Gal}(L/F) \) and \(\text{Gal}(L/M) \) are conjugate in \(\text{Gal}(L/K) \).

(9) Show that \(\mathbb{Q} \subseteq L = \mathbb{Q}(\sqrt{2}, \sqrt{-1}) \) is a Galois extension and determine its Galois group. Write down all the subgroups of \(\text{Gal}(L/\mathbb{Q}) \) and the corresponding subfields of \(L \).

(10) Show that for any natural number \(n \) there exists a Galois extension \(K \subseteq L \) with \(\text{Gal}(L/K) \) isomorphic to \(S_n \), the symmetric group of degree \(n \). Show that for any finite group \(G \) there exists a Galois extension whose Galois group is isomorphic to \(G \). (Hint: to prove the first claim, consider the field \(L = \mathbb{Q}(t_1, \ldots, t_n) \) of rational functions in \(t_1, \ldots, t_n \), then consider an action of \(S_n \) on \(L \), etc.)

(11) Let \(L \) be the splitting field of \(t^5 - 4t + 2 \) over \(\mathbb{Q} \). Show that \(\mathbb{Q} \subseteq L \) is a Galois extension with Galois group isomorphic to \(S_5 \).

(12) Let \(L \) be the splitting field of \(t^4 + t^3 + 1 \) over a field \(K \). Compute the Galois group \(\text{Gal}(L/K) \) for each of the following cases: \(K = \mathbb{F}_2 \), \(K = \mathbb{F}_3 \), and \(K = \mathbb{F}_4 \).
(13) Let \(p \) be a prime number and \(L = \mathbb{F}_p(t) \) be the field of rational functions in \(t \). Let \(a \in \mathbb{F}_p \) be a non-zero element, and let \(\varphi \in \text{Aut}_{\mathbb{F}_p}(L) \) be the automorphism determined by \(\varphi(t) = at \). Determine the subgroup \(G \leq \text{Aut}_{\mathbb{F}_p}(L) \) generated by \(\varphi \), and its fixed field \(L^G \).

(14) Show that there is at least one irreducible polynomial \(f \in \mathbb{F}_5[t] \) with \(\deg f = 17 \).

(15) Compute \(\Phi_{12} \in \mathbb{Z}[t] \), the 12-th cyclotomic polynomial.

(16) Let \(K \subseteq L \) be an extension of finite fields. Show that \(L \) is the \(n \)-th cyclotomic extension of \(K \) for some \(n \).

(17) Let \(L \) be the 7-th cyclotomic extension of \(\mathbb{Q} \). Find all the intermediate fields \(\mathbb{Q} \subseteq F \subseteq L \) and write each one as \(\mathbb{Q}(\alpha) \) for some \(\alpha \). Which one of these intermediate fields is Galois over \(\mathbb{Q} \)?

(18) Let \(\Phi_n \in \mathbb{Z}[t] \) denote the \(n \)-th cyclotomic polynomial. Show that:

(i) If \(n > 1 \) is odd, then \(\Phi_{2n}(t) = \Phi_n(-t) \).
(ii) If \(p \) is a prime dividing \(n \), then \(\Phi_{np}(t) = \Phi_n(t^p) \).
(iii) If \(p \) and \(q \) are distinct primes, then the non-zero coefficients of \(\Phi_{pq} \) are alternately +1 and −1. ([Hint: First show that if \(1/(1 - t^p)(1 - t^q) \) is expanded as a power series in \(t \), then the coefficients of \(t^m \) with \(m < pq \) are either 0 or 1.])
(iv) If \(n \) is not divisible by at least three distinct odd primes, then the coefficients of \(\Phi_n \) are 1, 0 or −1.
(v) \(\Phi_{105} \) has at least one coefficient which is not 1, 0 or −1.

(19) Let \(\mu = \exp(2\pi i/n) \) where \(i = \sqrt{-1} \), and let \(L = \mathbb{Q}(\mu) \) be the \(n \)-th cyclotomic extension of \(\mathbb{Q} \). Show that the isomorphism \(\text{Gal}(L/\mathbb{Q}) \to (\mathbb{Z}/(n))^\times \) sends the automorphism given by complex conjugation to the class of \(-1 \). Deduce that if \(n \geq 3 \), then \([L : L \cap \mathbb{R}] = 2 \) and show that \(L \cap \mathbb{R} = \mathbb{Q}(\mu + \mu^{-1}) = \mathbb{Q}(\cos 2\pi/n) \).