Example Sheet 1. Lectures 1–6, Galois Theory Michaelmas 2011

Note. You can assume that all fields are subfields of \(\mathbb{C} \), as assumed in this part of the lectures. However, most proofs work without that assumption (where an extension \(L/K \) simply means that \(K \) is a subfield of \(L \)).

FIELD EXTENSIONS, MINIMAL POLYNOMIALS

1.1. Let \(\alpha \) be a root of \(X^3 + X^2 - 2X + 1 \in \mathbb{Q}[X] \). Express \((1 - \alpha^2)^{-1}\) as a \(\mathbb{Q} \)-linear combination of 1, \(\alpha \) and \(\alpha^2 \). Justify the assertion that the cubic is irreducible over \(\mathbb{Q} \), using Gauss’ Lemma.

1.2. (Quadratic extensions) (i) Let \(\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{C} \). Show that \(P(X) = X^2 - 5 \) is irreducible in \(\mathbb{Q}(\sqrt{2})[X] \). If \(K \) is the extension of \(\mathbb{Q}(\sqrt{2}) \) generated by a root of \(P \), then \(K \) contains three quadratic fields over \(\mathbb{Q} \). Write these fields in the form \(\mathbb{Q}(\sqrt{a}) \) for \(a \in \mathbb{Z} \).

(ii) Let \(L/K \) be an extension of degree 2 with \(\mathbb{Q} \subset K \). Show that \(L = K(\alpha) = \{a + b\alpha \mid a, b \in K\} \) for some \(\alpha \in F \) with \(\alpha^2 \in K \).

1.3. Find the minimal polynomials over \(\mathbb{Q} \) of the complex numbers \(\sqrt{3}, i + \sqrt{2}, \sin(2\pi/5) \) and \(e^{\pi i/6} - \sqrt{3} \).

1.4. Let \(L/K \) be an extension and \(\alpha, \beta \in L \). Show that \(\alpha + \beta \) and \(\alpha \beta \) are algebraic over \(K \) if and only if \(\alpha \) and \(\beta \) are algebraic over \(K \).

1.5. Let \(\alpha = \sqrt{2} + \sqrt{3} \). Draw the diagram of subextensions of \(\mathbb{Q}(\alpha)/\mathbb{Q} \). Write down the minimal polynomial of \(\alpha \) over \(\mathbb{Q} \), and how it factors over each subfield of \(\mathbb{Q}(\alpha) \). Can you justify your diagram using the tower law?

TOWER LAW

1.6. Let \(L/K \) be a finite extension whose degree is prime. Show that there is no intermediate extension \(L \supsetneq K' \supsetneq K \).

1.7. Let \(L/K \) be an extension, and suppose that \(\alpha \in L \) be algebraic over \(K \) of odd degree, i.e. \([K(\alpha) : K]\) is odd. Show that \(K(\alpha) = K(\alpha^2) \).

1.8. Let \(L = K(\alpha, \beta) \), with \([K(\alpha) : K] = m\), \([K(\beta) : K] = n\) and \(\gcd(m, n) = 1 \). Show that \([L : K] = mn\).

1.9. Let \(L/K \) be a finite extension and \(P \in K[X] \) an irreducible polynomial of degree \(d > 1 \). Show that if \(d \) and \([L : K]\) are coprime, \(P \) has no roots in \(L \).
1.10. (i) Let α be algebraic over K. Show that there is only a finite number of intermediate fields $K \subset K' \subset K(\alpha)$. [Hint: Consider the minimal polynomial P of α over K', and show that P determines K'.]

(ii) Show that if L/K is a finite extension with $\mathbb{Q} \subset L$, for which there exist only finitely many intermediate subfields $K \subset K' \subset L$, then $L = K(\alpha)$ for some $\alpha \in L$. [Hint: use the fact that, as K has infinitely many elements, a finite dimensional K-vector space is not a union of finitely many proper K-subspaces. (But in fact (ii) holds for finite fields as well.)]

Optional (not necessarily harder)

1.11. * Find the greatest common divisors of the polynomials $P_1(X) = X^3 - 3$ and $P_2(X) = X^2 - 4$ in $\mathbb{Q}[X]$ and in $\mathbb{F}_5[X]$ (if you know \mathbb{F}_5 already), expressing them in the form $Q_1P_1 + Q_2P_2$ for polynomials Q_1, Q_2.

1.12. * Let R be a ring, and K a subring of R which is a field. Show that if R is an integral domain and $\dim_K R < \infty$ then R is a field. Show that the result fails without the assumption that R is a domain.

1.13. * (Cubic extensions) Suppose that L/K is an extension with $[L : K] = 3$, and let $\alpha \in L \setminus K$. By considering four appropriate elements of the 3-dimensional vector space L, show that for every $\beta \in L$ we can find $a, b, c, d \in K$ such that $\beta = \frac{a + b \alpha}{c + d \alpha}$. (This shows $L = K(\alpha)$ without appealing to the tower law.)

1.14. * Let L/K be an extension, and $\alpha, \beta \in L$ transcendental over K. Show that α is algebraic over $K(\beta)$ if and only if β is algebraic over $K(\alpha)$. [Then α, β are said to be algebraically dependent.]

1.15. * Let L/K be a field extension, and $\tau : L \to L$ a K-homomorphism. Show that if L/K is algebraic then τ is an isomorphism. How about when L/K is not algebraic?

1.16. * Let K, L be subfields of a field M such that M/K is finite. Denote by KL the set of all finite sums $\sum x_i y_i$ with $x_i \in K$ and $y_i \in L$. Show that KL is a subfield of M, and: $[KL : K] \leq [L : K \cap L]$.

October 13, 2011

t.yoshida@dpmms.cam.ac.uk