RINGS (Preliminaries)

1.1.* Find the greatest common divisors of the polynomials \(P_1(X) = X^3 - 3 \) and \(P_2(X) = X^2 - 4 \) in \(\mathbb{Q}[X] \) and in \(\mathbb{F}_5[X] \), expressing them in the form \(Q_1P_1 + Q_2P_2 \) for polynomials \(Q_1, Q_2 \).

1.2.* Let \(R \) be a ring, and \(K \) a subring of \(R \) which is a field. Show that if \(R \) is an integral domain and \(\text{dim}_K R < 1 \) then \(R \) is a field. Show that the result fails without the assumption that \(R \) is a domain.

FIELD EXTENSIONS AND \(K \)-HOMOMORPHISMS

1.3. Let \(F/K \) be a finite extension whose degree is prime. Show that there is no intermediate extension \(F \supseteq K' \supset K \).

1.4. (Quadratic extensions) (i) Let \(\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{C} \). Show that \(P(X) = X^2 - 5 \) is irreducible in \(\mathbb{Q}(\sqrt{2})[X] \). If \(K \) is the field we get by adjoining the root of \(P \) to \(\mathbb{Q}(\sqrt{2}) \), then \(K \) contains three quadratic fields over \(\mathbb{Q} \). Write these fields in the form \(\mathbb{Q}(\sqrt{a}) \) for \(a \in \mathbb{Z} \).

(ii) Let \(F/K \) be an extension of degree 2. Show that if the characteristic of \(K \) is not 2, then \(F = K(x) = \{a + bx \mid a, b \in K\} \) for some \(x \in F \) with \(x^2 \in K \). Show that if the characteristic is 2, then either \(F = K(x) \) with \(x^2 \in K \), or \(F = K(x) \) with \(x^2 + x \in K \).

1.5. Let \(x \) be a root of \(X^3 + X^2 - 2X + 1 \in \mathbb{Q}[X] \). Express \((1 - x^2)^{-1} \) as a \(\mathbb{Q} \)-linear combination of 1, \(x \) and \(x^2 \). Justify the assertion that the cubic is irreducible over \(\mathbb{Q} \), using Gauss’ Lemma.

1.6.* Suppose that \(F/K \) is an extension with \([F : K] = 3 \). Show that for any \(x \in F \) and \(y \in F \setminus K \) we can find \(p, q, r, s \in K \) such that \(x = \frac{p + qy}{r + sy} \).

[Hint: Consider four appropriate elements of the 3-dimensional vector space \(F \).]

MINIMAL POLYNOMIALS, ALGEBRAIC EXTENSIONS

1.7. Let \(F/K \) be an extension, and suppose that \(x \in F \) be algebraic over \(K \) of odd degree, i.e. \([K(x) : K] \) is odd. Show that \(K(x) = K(x^2) \).

1.8. Find the minimal polynomials over \(\mathbb{Q} \) of the complex numbers \(\sqrt[3]{3}, i + \sqrt{2}, \sin(2\pi/5) \) and \(e^{\pi i/6} - \sqrt{3} \).

1.9. Let \(F = K(x, y) \), with \([K(x) : K] = m, [K(y) : K] = n \) and \(\gcd(m, n) = 1 \). Show that \([F : K] = mn \).
1.10. Let F/K be an extension and $x, y \in F$. Show that $x + y$ and xy are algebraic over K if and only if x and y are algebraic over K.

1.11. (i) Let $K(X)$ be a rational function field over a field K. Let $r = p/q \in K(X)$ be a non-constant rational function. Find a polynomial in $K(r)[T]$ which has X as a root.

(ii) Let L be a subfield of $K(X)$ containing K. Show that either $K(X)/L$ is finite, or $L = K$. Deduce that the only elements of $K(X)$ which are algebraic over K are constants.

1.12. * Show that an algebraic extension F/K of fields is finite if and only if it is finitely generated; i.e. if and only if $F = K(x_1, \ldots, x_n)$ for some $x_i \in F$. Prove that the algebraic numbers (roots of polynomials in $\mathbb{Q}[X]$) form a subfield of \mathbb{C} which is not finitely generated over \mathbb{Q}.

1.13. * Let F/K be an extension, and $x, y \in F$ transcendental over K. Show that x is algebraic over $K(y)$ if and only if y is algebraic over $K(x)$. [Then x, y are said to be algebraically dependent.]

1.14. * Let K, L be subfields of a field M such that M/K is finite. Denote by KL the set of all finite sums $\sum x_iy_i$ with $x_i \in K$ and $y_i \in L$. Show that KL is a subfield of M, and:

$$[KL : K] \leq [L : K \cap L].$$

1.15. Let $x = \sqrt{2} + \sqrt{3}$. Draw and justify the diagram of subextensions of $\mathbb{Q}(x)/\mathbb{Q}$. Write down the minimal polynomial of x over \mathbb{Q}, and how it factors over each subfield of $\mathbb{Q}(x)$.

1.16. Let F/K be a finite extension and $P \in K[X]$ an irreducible polynomial of degree $d > 1$. Show that if d and $[F : K]$ are coprime, P has no roots in F.

1.17. (i) Let x be algebraic over K. Show that there is only a finite number of intermediate fields $K \subset K' \subset K(x)$. [Hint: Consider the minimal polynomial P of x over K', and show that P determines K'.]

(ii) Show that if F/K is a finite extension of infinite fields for which there exist only finitely many intermediate subfields $K \subset K' \subset F$, then $F = K(x)$ for some $x \in F$. [It is true for finite fields as well, but here we use the infiniteness.]

1.18. * Let F/K be a field extension, and $\varphi : F \to F$ a K-homomorphism. Show that if F/K is algebraic then φ is an isomorphism. How about when F/K is not algebraic?

(* optional)