Separability

1. Show that every irreducible polynomial over a finite field is separable. More generally, show that if \(K \) is a field of characteristic \(p > 0 \) such that every element of \(K \) is a \(p \)-th power, then any irreducible polynomial over \(K \) is separable (therefore, a field of characteristic \(p > 0 \) is perfect if and only if every element is a \(p \)-th power in that field).

2. Let \(K \) be a field of characteristic \(p > 0 \), and let \(x \) be algebraic over \(K \). Show that \(x \) is separable over \(K \) if and only if \(K(x) = K(x^p) \).

3. (i) Let \(K \) be a field of characteristic \(p > 0 \) and \(c \) an element of \(K \) which is not a \(p \)-th power. Let \(n > 0 \) and \(q = p^n \). Show that \(P(X) = X^q - c \) is irreducible in \(K[X] \) and is inseparable, and that its splitting field is of the form \(F = K(x) \) with \(x^q = c \).
 (ii) Let \(F/K \) be a finite, purely inseparable extension (i.e. \(|\text{Hom}_K(F, E)| \leq 1 \) for every extension \(E/K \) of characteristic \(p \)). Show that if \(x \in F \) then \(x^{p^n} \in K \) for some \(n \in \mathbb{N} \). Deduce that there is a chain of subfields \(K = K_0 \subset K_1 \subset \cdots \subset K_r = F \) where each extension \(K_i/K_{i-1} \) is of the type described in (i).

4. Let \(F/K \) be a finite extension. Show that there is a unique intermediate field \(K \subset L \subset F \) such that \(L/K \) is separable and \(F/L \) is purely inseparable. (This \(K' \) is called the \textit{separable closure} of \(K \) in \(L \).)

Galois extensions

5. (i) Let \(K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \). Determine \([K : \mathbb{Q}] \) and \(\text{Aut}_\mathbb{Q}(K) \).
 (ii) Let \(K \) be a field with \(\text{char} \ K \neq 2 \). Prove that every extension \(F/K \) with \([F : K] = 4 \) and \(\text{Aut}_K(F) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) is biquadratic, i.e. of the form \(F = K(\sqrt{a}, \sqrt{b}) \).

6. Show that \(F = \mathbb{Q}(\sqrt{2}, i) \) is a Galois extension of \(\mathbb{Q} \), and show that \(\text{Gal}(F/\mathbb{Q}) \) is isomorphic to \(D_8 \), the dihedral group of order 8 (sometimes also denoted \(D_4 \)). Write down the lattice of subgroups of \(D_8 \) (be sure you have found them all!) and the corresponding subfields of \(F \). Which subfields are Galois over \(\mathbb{Q} \)?

7. Show that all subextensions of an abelian extension are abelian.

8. (**Artin’s Theorem**) Show that a finite extension \(F/K \) is Galois if and only if \(K = F^G \) for some subgroup \(G \subset \text{Aut}_K(F) \). (In particular, the latter condition implies \(G = \text{Aut}_K(F) \) and \([F : K] = |G| \) by the fundamental theorem.)
[Hint: for every $x \in F$, construct a separable polynomial in $F^G[X]$ of degree $\leq |G|$, whose roots lie in F and are distinct, and is divisible by the minimal polynomial of x over F^G.]

9. Let $P \in \mathbb{F}_q[X]$ be a polynomial over a finite field. Describe the Galois group of P over \mathbb{F}_q in terms of the irreducible factors of P.

10. (i) Let F/K be a finite Galois extension, and H_1, H_2 subgroups of $\text{Gal}(F/K)$, with fixed fields L_1, L_2. Identify the subgroup of $\text{Gal}(F/K)$ corresponding to the field $L_1 \cap L_2$.

(ii) Show that the fixed field of $H_1 \cap H_2$ is the composite field $L_1 L_2$ of L_1, L_2, i.e. the subextension of F/K generated by the elements of L_1, L_2 (or, the set of all finite sums $\sum x_i y_i$ for $x_i \in L_1$, $y_i \in L_2$; see Example Sheet 1, Problem 13).

(iii) Show $\mathbb{Q}(\mu_m) \cdot \mathbb{Q}(\mu_n) = \mathbb{Q}(\mu_{mn})$ if m, n are relatively prime.

11. Let K be any field and $F = K(X)$ the field of rational functions over K.

(i) Show that for every $a \in K$ there is a unique $\sigma_a \in \text{Aut}_K(F)$ with $\sigma_a(X) = X + a$.

(ii) Let $G = \{\sigma_a \mid a \in K\}$. Show that G is a subgroup of $\text{Aut}_K(F)$, isomorphic to the additive group of K. Show that if K is infinite, then $F^G = K$.

(iii) Assume that K has characteristic $p > 0$, and let $H = \{\sigma_a \mid a \in \mathbb{F}_p\}$. Show that $F^H = K(Y)$ with $Y = X^p - X$. [Hint: use Artin’s theorem or Example Sheet 2, Problem 1.]

12. Let K be any field, and let $F = K(X)$, a rational function field. Define the maps $\sigma, \tau : F \to F$ by the formulae

$$\tau f(X) = f\left(\frac{1}{X}\right), \quad \sigma f(X) = f\left(1 - \frac{1}{X}\right) \quad (\forall f \in F).$$

Show that σ, τ are K-homomorphism of F, and that they generate a subgroup $G \subset \text{Aut}_K(F)$ isomorphic to S_3. Show that $F^G = K(g)$ where

$$g(X) = \frac{(X^2 - X + 1)^3}{X^2(X - 1)^2} \in F.$$

13. Show that $\mathbb{Q}(\sqrt{2 + \sqrt{2} + \sqrt{2}})$ is an abelian extension of \mathbb{Q}, and determine its Galois group.

14. Use (1) the structure of $(\mathbb{Z}/(m))^\times$ (Example Sheet 2, Problem 19), (2) the **Dirichlet’s theorem on primes in arithmetic progressions**, stating that if a and b are coprime positive integers, then the set $\{an + b \mid n \in \mathbb{N}\}$ contains infinitely many primes, and (3) the structure theorem for finite abelian groups to show that every finite abelian group is isomorphic to a quotient of $(\mathbb{Z}/(m))^\times$ for suitable m. Deduce that every finite abelian group is the Galois group of some Galois extension K/\mathbb{Q}. [It is a long-standing unsolved problem to show this holds for an arbitrary finite group.] Find an explicit x for which $\mathbb{Q}(x)/\mathbb{Q}$ is abelian with Galois group $\mathbb{Z}/23\mathbb{Z}$.

General equations and Kummer extensions

15. (i) Show that for any \(n \geq 1 \) there exists a Galois extension of fields \(F/K \) with \(\text{Gal}(F/K) \cong S_n \), the symmetric group of degree \(n \).

(ii) Show that for any finite group \(G \) there exists a Galois extension whose Galois group is isomorphic to \(G \).

16. Let \(K \) be a field containing a primitive \(n \)-th root of unity for some \(n > 1 \). Let \(a, b \in K \) such that the polynomials \(P(X) = X^n - a \) and \(Q(X) = X^n - b \) are irreducible. Show that \(P \) and \(Q \) have the same splitting field if and only if \(b = c^n a^r \) for some \(c \in K \) and \(r \in \mathbb{N} \) with \(\gcd(r, n) = 1 \).

17. (i) Let \(p \) be a prime, and \(K \) be a field with \(\text{char} K \neq p \) and \(K' := K(\mu_p) \). For \(a \in K \), show that \(X^p - a \) is irreducible over \(K \) if and only if it is irreducible over \(K' \).

(ii) If \(K \) contains a primitive \(n \)-th root of unity, then we know that \(X^n - a \) is reducible over \(K \) if and only if \(a \) is a \(d \)-th power in \(K \) for some divisor \(d > 1 \) of \(n \). Show that this need not be true if \(K \) doesn’t contain a primitive \(n \)-th root of unity.

18. Compute the Galois group of \(X^5 - 2 \) over \(\mathbb{Q} \).

Galois groups over \(\mathbb{Q} \)

19. (i) What are the transitive subgroups of \(S_4 \)? Find a monic polynomial over \(\mathbb{Z} \) of degree 4 whose Galois group is \(V_4 = \{e, (12)(34), (13)(24), (14)(23)\} \).

(ii) Let \(P \in \mathbb{Z}[X] \) be monic and separable of degree \(n \). Suppose that the Galois group of \(P \) over \(\mathbb{Q} \) doesn’t contain an \(n \)-cycle. Prove that the reduction of \(P \) modulo \(p \) is reducible for every prime \(p \). (See Example Sheet 2, Problem 10.)

20. (i) Let \(p \) be prime. Show that any transitive subgroup \(G \) of \(S_p \) contains a \(p \)-cycle. Show that if \(G \) also contains a transposition then \(G = S_p \).

(ii) Prove that the Galois group of \(X^5 + 2X + 6 \) is \(S_5 \).

(iii) Show that if \(P \in \mathbb{Q}[X] \) is an irreducible polynomial of degree \(p \) which has exactly two non-real roots, then its Galois group is \(S_p \). Deduce that for an odd prime \(p \) and a sufficiently large \(m \in \mathbb{Z} \),

\[
P(X) = X^p + mp^2(X - 1)(X - 2)\cdots(X - p + 2) - p
\]

has Galois group \(S_p \).

E-mail address: t.yoshida@dpmms.cam.ac.uk