Fields and automorphisms

1. Let K be a field of characteristic $p > 0$. Let $a \in K$, and let $P \in K[X]$ be the polynomial $P(X) = X^p - X - a$. Show that $P(X + b) = P(X)$ for every $b \in \mathbb{F}_p \subset K$. Now suppose that P does not have a root in K, and let L/K be a splitting field for P over K. Show that $L = K(x)$ for any $x \in L$ with $P(x) = 0$, and that L/K is Galois, with Galois group isomorphic to $\mathbb{Z}/p\mathbb{Z}$. (These cyclic extensions are called Artin-Schreier extensions.)

2. Let K be a field and $c \in K$. If $m, n \in \mathbb{Z}_{>0}$ are coprime, show that $X^{mn} - c$ is irreducible if and only if both $X^m - c$ and $X^n - c$ are irreducible. (Use the Tower Law.)

3. (i) Let x be algebraic over K. Show that there is only a finite number of intermediate fields $K \subset K' \subset K(x)$. [Hint: Consider the minimal polynomial of x over K'.] (ii) Show that if L/K is a finite extension of infinite fields for which there exist only finitely many intermediate subfields $K \subset K' \subset L$, then $L = K(x)$ for some $x \in L$.

4. Let $L = \mathbb{F}_p(X, Y)$ be the field of rational functions in two variables (i.e. the field of fractions of $\mathbb{F}_p[X, Y]$) and K the subfield $\mathbb{F}_p(X^p, Y^p)$. Show that for any $f \in L$ one has $f^p \in K$, and deduce that L/K is not a simple extension.

5. (i) Let $f \in K(X)$. Show that $K(X) = K(f)$ if and only if $f = (aX + b)/(cX + d)$ for some $a, b, c, d \in K$ with $ad - bc \neq 0$. (ii) Show that $\text{Aut}(K(X)/K) \cong PGL_2(K)$.

6. Let p be a prime and $L = \mathbb{F}_p(X)$. Let a be an integer with $1 \leq a < p$, and let $\sigma \in \text{Aut}(L)$ be the unique automorphism such that $\sigma(X) = aX$. Determine the subgroup $G \subset \text{Aut}(L)$ generated by σ, and its fixed field L^G.

Finite fields

7. The polynomials $P(X) = X^3 + X + 1$, $Q(X) = X^3 + X^2 + 1$ are irreducible over \mathbb{F}_2. Let K be a field obtained from \mathbb{F}_2 by adjoining a root of P, and L be the field obtained from \mathbb{F}_2 by adjoining a root of Q. Describe explicitly an isomorphism from K to L.

8. Factor the following polynomials: $X^9 - X \in \mathbb{F}_3[X]$, $X^{16} - X \in \mathbb{F}_4[X]$, $X^{16} - X \in \mathbb{F}_8[X]$.

Date: November 11, 2009.
9. (i) Let p be an odd prime, and let $x \in \mathbb{F}_p^\times$. Show that $x \in \mathbb{F}_p$ if and only if $x^p = x$, and that $x + x^{-1} \in \mathbb{F}_p$ if and only if either $x^p = x$ or $x^p = x^{-1}$.

(ii) Apply (i) to a root of $X^2 + 1$ in a suitable extension of \mathbb{F}_p to show that -1 is a square in \mathbb{F}_p if and only if $p \equiv 1 \pmod{4}$.

(iii) Show that $x^4 = -1$ if and only if $(x + x^{-1})^2 = 2$. Deduce that 2 is a square in \mathbb{F}_p if and only if $p \equiv \pm1 \pmod{8}$.

10. Write down the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q}. Show that it is reducible mod p for all primes p. (First show that for every p, one of 2, 3 or 6 is a square in \mathbb{F}_p.)

11. Find the Galois group of $X^4 + X^3 + 1$ (that is, the Galois group of the splitting field) over each of the finite fields $\mathbb{F}_2, \mathbb{F}_3, \mathbb{F}_4$.

12. Recall the definition of the canonical isomorphism $\varphi_n : \mathbb{Z}/n\mathbb{Z} \cong \text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$. For every m, n with $m \mid n$, show that the following is a commutative diagram:

$$
\begin{array}{ccc}
\mathbb{Z}/n\mathbb{Z} & \xrightarrow[\cong]{\varphi_n} & \text{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q) \\
\downarrow & & \downarrow \\
\mathbb{Z}/m\mathbb{Z} & \xrightarrow[\cong]{\varphi_m} & \text{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)
\end{array}
$$

where the right vertical map is the natural restriction $\sigma \mapsto \sigma|_{\mathbb{F}_{q^m}}$ and the left vertical map is the natural surjection $a \mod n \mapsto a \mod m$.

13. Write $a_n(q)$ for the number of irreducible monic polynomials in $\mathbb{F}_q[X]$ of degree exactly n.

(i) Show that an irreducible polynomial $P \in \mathbb{F}_q[X]$ of degree d divides $X^{q^n} - X$ if and only if d divides n.

(ii) Deduce that $X^{q^n} - X$ is the product of all irreducible monic polynomials of degree dividing n, and that

$$
\sum_{d \mid n} da_d(q) = q^n.
$$

(iii) Calculate the number of irreducible polynomials of degree 6 over \mathbb{F}_2.

(iv) If you know about the M"obius function $\mu(n)$, use the M"obius inversion formula to show that

$$
a_n(q) = \frac{1}{n} \sum_{d \mid n} \mu(n/d) q^d.
$$

Cyclotomic fields

For $n \in \mathbb{Z}_{>0}$, we denote by $K(\mu_n)$ the n-th cyclotomic extension of K, the splitting field of $X^n - 1$ over K. We denote by ζ_n a primitive n-th root of unity for $n \in \mathbb{Z}_{>0}$.

14. (i) Find all the subfields of $\mathbb{Q}(\mu_7)$, expressing them in the form $\mathbb{Q}(x)$. Which are Galois over \mathbb{Q}?
(ii) Find the quadratic subfields of $\mathbb{Q}(\mu_{15})$.

15. (i) Show that a regular 7-gon is not constructible by ruler and compass.
(ii) For which $n \in \mathbb{N}$ is it possible to trisect an angle of size $2\pi/n$ using only ruler and compass?

16. Let $K = \mathbb{Q}(\mu_n)$ be the n-th cyclotomic field, considered as a subfield of \mathbb{C}. Show that under the canonical isomorphism $\text{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/(n))^\times$, the complex conjugation is identified with the residue class of $-1 \pmod{n}$. Deduce that if $n \geq 3$, then $|K : \mathbb{Q}| = 2$ and show that $K \cap \mathbb{R} = \mathbb{Q}(\zeta_n + \zeta_n^{-1}) = \mathbb{Q}(\cos 2\pi/n)$.

17. (i) Let p be an odd prime. Show that if $r \in \mathbb{Z}$ then $\sum_{0 \leq s < p} \zeta_p^s$ equals p if $r \equiv 0 \pmod{p}$ and equals 0 otherwise.
(ii) Let $\tau = \sum_{0 \leq s < p} \zeta_p^s$. Show that $\tau \overline{\tau} = p$. Show also that τ is real if -1 is a square mod p, and otherwise τ is purely imaginary (i.e. $\tau/i \in \mathbb{R}$).
(iii) Let $L = \mathbb{Q}(\mu_p)$. Show that L has a unique subfield K which is quadratic over \mathbb{Q}, and that $K = \mathbb{Q}(\sqrt{p})$ where $\zeta = (-1)^{(p-1)/2}$.
(iv) Show that $\mathbb{Q}(\mu_m) \subset \mathbb{Q}(\mu_n)$ if $m|n$. Deduce that if $0 \neq m \in \mathbb{Z}$ then $\mathbb{Q}(\sqrt{m})$ is a subfield of $\mathbb{Q}(\mu_{4|m})$. [This is a simple case of the Kronecker-Weber Theorem.]

18. Let $\Phi_n \in \mathbb{Z}[X]$ denote the n-th cyclotomic polynomial. Show that:
(i) If n is odd then $\Phi_{2n}(X) = \Phi_n(-X)$.
(ii) If p is a prime dividing n then $\Phi_{np}(X) = \Phi_n(X^p)$.
(iii) If p and q are distinct primes then the nonzero coefficients of Φ_{pq} are alternately $+1$ and -1. [Hint: First show that if $1/(1 - X^p)(1 - X^q)$ is expanded as a power series in X, then the coefficients of X^m with $m < pq$ are either 0 or 1.]
(iv) If n is not divisible by at least three distinct odd primes then the coefficients of Φ_n are -1, 0 or 1.
(v) $\Phi_{3 \times 5 \times 7}$ has at least one coefficient which is not -1, 0 or 1.

19. In this question we determine the structure of the groups $(\mathbb{Z}/(m))^\times$.
(i) Let p be an odd prime. Show that $(1 + p)p^{n-2} \equiv 1 + p^{n-1} \pmod{p^n}$ for every $n \geq 2$. Deduce that $1 + p$ has order p^{n-1} in $(\mathbb{Z}/(p^n))^\times$.
(ii) If $b \in \mathbb{Z}$ with $(p,b) = 1$ and b has order $p - 1$ in $(\mathbb{Z}/(p))^\times$ and $n \geq 1$, show that $b^{p^{n-1}}$ has order $p - 1$ in $(\mathbb{Z}/(p^n))^\times$. Deduce that $(\mathbb{Z}/(p^n))^\times$ is cyclic for $n \geq 1$ and p an odd prime.
(iii) Show that $5^{2^n-3} \equiv 1 + 2^{n-1} \pmod{2^n}$ for every $n \geq 3$. Deduce that $(\mathbb{Z}/(2^n))^\times$ is generated by 5 and -1, and is isomorphic to $\mathbb{Z}/2^{n-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, for any $n \geq 2$.

EXAMPLE SHEET 2 3
(iv) Use the Chinese Remainder Theorem to deduce the structure of \((\mathbb{Z}/(m))^\times \) in general.

E-mail address: t.yoshida@dpmms.cam.ac.uk