Stochastic Financial Models – Example sheet 4
Lent 2017, SA

Problem 1. Show that the Black–Scholes price of a European call option is strictly convex in both the strike price \(K \) and the initial stock price \(S_0 \), decreasing in \(K \) and increasing in \(S_0 \). Show that the price increases with the interest rate \(r \), and with the expiry \(T \).

What are the corresponding statements for the Black–Scholes price of a European put option?

Problem 2. Consider a stock which pays a dividend at constant rate \(\delta \geq 0 \). The price of the stock is modelled by

\[
S_t = S_0 e^{\sigma W_t + (r - \delta - \sigma^2/2)t}.
\]

where \(r \geq 0 \) is the risk-free interest rate, for a Brownian motion \(W \). Show that

\[
e^{-rt}S_t + \int_0^t e^{-ru}S_u \delta du
\]
defines a martingale. Why then is \(S \) a sensible model for the stock price (at least under an equivalent measure)? Show that the time-0 value of a European put option with strike \(K \) and expiry \(T \) written on this asset is

\[
K e^{-rT} \Phi \left(\frac{\log(K/S_0) - (r - \delta + \sigma^2/2)T}{\sigma \sqrt{T}} \right) - S_0 e^{-\delta T} \Phi \left(\frac{\log(K/S_0) - (r - \delta - \sigma^2/2)T}{\sigma \sqrt{T}} \right).
\]

Can we deduce the price of the European call by put-call parity in the case when the stock pays dividends?

Problem 3. Show that the joint moment generating function of a Brownian motion and its maximum is given by

\[
E(e^{aW_t + b \max_{0 \leq s \leq t} W_s}) = \frac{2}{2a + b} \left((a + b) \Phi(\sqrt{t}e^{(a+b)^2/2}) + a \Phi(-\sqrt{t}e^{a^2/2}) \right).
\]

Problem 4. A European lookback call option entitles the holder to buy one unit of stock at the expiry time \(T \) at the lowest price reached by the stock during the life of the option. Thus, if it is purchased at time 0, at time \(T \) it pays off the amount \(S_T - \inf_{0 \leq u \leq T} S_u \). Find the initial price of such an option in the Black-Scholes model.

Problem 5. Let \(EC(S_0, K, \sigma, r, T) \) denote the Black–Scholes price of a European call option with strike \(K \), expiry \(T \) on an asset with initial price \(S_0 \), volatility \(\sigma \), when the constant interest rate is \(r \). Show that the price of a down-and-out call with strike \(K \) and a barrier at \(B \), where \(B < \min\{S_0, K\} \), can be expressed in terms of \(EC \) as

\[
EC(S_0, K, \sigma, r, T) - (B/S_0)^{2r/\sigma^2 - 1} EC(B^2/S_0, K, \sigma, r, T).
\]
Problem 6. In the Black–Scholes model, find the time-0 prices of European contingent claims which pay at time \(T \) the amounts:

(a) \(\int_0^T S_u \, du \)

(b) \((\log S_T)^2 \).

Problem 7. Given times \(0 < T_0 < T_1 \), a forward start call option gives the right (but not the obligation) to buy a certain stock at time \(T_1 \) at the stock’s price at time \(T_0 \). Explain why the payout is \((S_{T_1} - S_{T_0})^+ \) and find its initial price in the Black–Scholes model. How is this option hedged?

Problem 8. The Black–Scholes PDE is given by

\[
\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 s^2 \frac{\partial^2 V}{\partial s^2} + rs \frac{\partial V}{\partial s} - rV = 0.
\]

(i) Set \(v(\tau, x) = V(T - 2\tau/\sigma^2, e^x) \). Show that

\[
\frac{\partial v}{\partial \tau} - \frac{\partial^2 v}{\partial x^2} + (1 - k) \frac{\partial v}{\partial x} + kv = 0
\]

for constant \(k \) which you should determine.

(ii) Let \(\alpha, \beta \) be real constants and defined \(u(\tau, x) \) via

\[u(\tau, x) = e^{\alpha x + \beta \tau} v(\tau, x). \]

Find the PDE for \(u(\tau, x) \) and choose \(\alpha, \beta \) such that \(u \) satisfies the standard heat equation,

\[\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}. \]

Problem 9. Consider the standard heat equation

\[\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial x^2}. \]

Assume \(t \in [0, T], x \in [0, L] \) and initial/boundary data

\[u(0, x) = g(x), \quad u(t, 0) = a(t), \quad u(t, L) = b(t). \]

The grid \(\{(i \delta_t, j \delta_x) : i = 1, \ldots, N_t, j = 1, \ldots, N_x\} \) with \(\delta_x = L/N_x, \delta_t = T/N_t \) is given and we seek approximations \(U^i_j \approx u(i \delta_t, j \delta_x) \). Set

\[U^i = \left(U^i_j \right)_{j=1}^{N_x - 1} \in \mathbb{R}^{N_x - 1}. \]

(i) Formulate the FTCS-method as linear equations

\[U^{i+1} = FU^i + p^i \]

for some \((N_x - 1) \times (N_x - 1)\)-matrix \(F \) and \(p^i \in \mathbb{R}^{N_x - 1} \).
(ii) Similarly, formulate the BTCS-method as

$$BU^{i+1} = U^i + q^i$$

for a matrix B and a vector q^i to be determined.

(iii) Show that adding these two linear equations yields exactly the Crank–Nicolson method.