STOCHASTIC FINANCIAL MODELS: Examples 3 (of 4)

1. An investor with wealth w_0 at time 0 wishes to invest it in such a way as to maximise $E U(w_N/w_0)$, where w_N is the wealth at the start of day N, and $U(x) = x^{1-R}/(1 - R)$. Each day, he chooses the proportion θ of his wealth to invest in the single risky asset, so that his wealth at the start of day $n+1$ will be

$$w_{n+1} = w_n\{\theta X_n + (1 - \theta)(1 + r)\}$$

where the X_i are independent identically-distributed positive random variables, and r is the per-period riskless rate of interest. Find form of the optimal policy in each of the two situations

(i) θ unrestricted;

(ii) $0 \leq \theta \leq 1$.

Show that the solutions are the same if and only if

$$\frac{E(X_1^{1-R})}{E(X_0^{1-R})} \leq 1 + r \leq EX_0.$$

2. At the start of year n, an investor receives income $Y_n \geq 0$. He chooses to invest a proportion $\theta_n \in [0,1]$ of this in the stock market, and consumes the remainder. At the start of the next year, his income is

$$Y_{n+1} = Y_n + \theta_n Y_n X_n,$$

where $X_n > 0$ is the return on the stock market in year n. The X_n are independent identically-distributed random variables, with mean μ. The investor’s objective is to choose the θ_n so as to maximise

$$E\{\sum_{n=0}^{N-1} (1 - \theta_n)Y_n + Y_N\}.$$

How should he invest so as to achieve this?

3. A gambler has the chance to bet on a sequence of N coin tosses. Let $\xi_n = 1$ if the nth toss is a Head, and let $\xi_n = -1$ otherwise. The ξ_n are independent but not identically distributed; $P(\xi_n = 1) = p_n \geq 1/2$. If the gambler’s wealth just before the nth toss is w_{n-1}, he may stake any amount $x \in [0, w_{n-1}]$ on the toss of the coin; his wealth at time n is therefore

$$w_n = w_{n-1} + x\xi_n.$$

Determine how the gambler should play so as to maximise his final expected utility $E \log(w_N)$.

1
4. An agent starts with initial capital C. At the beginning of day n ($n = 1, \ldots, N$) he observes a new non-negative random variable Y_n, and then chooses c_n, the amount of his remaining capital to consume that day. The Y_n are independent, $\mathbb{E}Y_n = \mu_n$. His objective is to maximise

$$
\mathbb{E}\left[\sum_{n=1}^{N} Y_n \log(c_n) \right]
$$

subject to the constraint $\sum_{n=1}^{N} c_n = C$. Find his optimal consumption policy, and an expression for the maximal value of his objective.

5. If $(B_t)_{t \geq 0}$ is a Brownian motion, show that the following processes are martingales:
 (i) $B_t^2 - t$;
 (ii) $\exp(\theta B_t - \frac{1}{2} \theta^2 t)$ for any $\theta \in \mathbb{R}$;
 (iii) $B_t^3 - 3tB_t$;
 (iv) $\cosh(\theta B_t)e^{-\theta^2 t/2}$ for any $\theta \in \mathbb{R}$.

6. An agent holds a single share, whose value at time t is $S_0 + \sigma B_t$. The firm issuing the share may go bankrupt at some exponentially-distributed random time T with mean $1/\lambda$. The agent plans to sell the share at the first time H_a that the price exceeds a; if this comes before T, then the value to the agent is $a \exp(-rH_a)$, otherwise the value is nothing. Find the agent’s optimal choice of a.

7. Using the martingale from the second part of Question 5, and the Optional Sampling Theorem, show that if $H_a \equiv \inf\{t : B_t > a\}$ is the first time that a Brownian motion exceeds level $a > 0$, then the Laplace transform of H_a is given by

$$
\mathbb{E}\exp(-\lambda H_a) = \exp(-a\sqrt{2\lambda}).
$$

Confirm this by integrating the density of H_a as derived from the Reflection Principle.

8. Suppose that $a < x < b$, and let $\tau \equiv \inf\{t : B_t \not\in [a,b]\}$. For $\theta > 0$, using an appropriate martingale and the Optional Sampling Theorem, prove that

$$
\mathbb{E}[\exp(-\frac{1}{2} \theta^2 \tau) | B_0 = x] = \frac{\cosh(\theta(x - (a + b)/2))}{\cosh(\theta(b - a)/2)}.
$$