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Part II Differential Geometry: Example Sheet 3 of 4

1. Let o : I — S be a geodesic. Show that if a is a plane curve and &(t) # 0 for some ¢ € I, then &(t) is
an eigenvector of the differential of the Gauss map at «(t). [Hint: compare the normal n of a with the
normal N of S.]

2. Show that if all geodesics of a connected surface are plane curves, then the surface is contained in a
plane or a sphere [Hint: use the previous problem and Example sheet 2].

3. Let f:51 — S5 be an isometry between two surfaces.

(i) Let a : I — S1 be a curve and V' a vector field along a. Let v := foa, and W(t) := D fu)(V(t))
the corresponding vector field along . Show that DW/dt = D f,)(DV/dt), and hence that V' parallel
along « implies that W is parallel along .

(ii) Deduce that f maps geodesics to geodesics.

4. Show that the equations for geodesics on a smooth surface may be written locally in terms of coordinates

(u(t), v(t)) as

d 1
- (B + Fi) = 5(Euaz + 2F, 00 + Gyo?)
d 1
— (Pt Go) = §(Evu2 + 2F, 00 + G, ?).

5. Show that there are no compact minimal surfaces in R3.

6. Let S be a regular surface without umbilical points. Prove that S is a minimal surface if and only if the
Gauss map N : S — S? satisfies

(DNp(v1), DNp(v2)) = A(p)(v1, v2)

for all p € S and all v1,ve € T},S, where A(p) # 0 is a number which depends only on p. By considering
stereographic projection deduce that isothermal coordinates exist around a non planar point in a minimal
surface.

7. Let D C C, and f and g functions on D giving a Weierstrass representation of a parametrisation ¢.
Show that ¢ is an immersion if and only f vanishes only at the poles of g and the order of its zero at
such a point is exactly twice the order of the pole of g.

8. Find D, f and g giving a Weierstrass representation of the catenoid, resp. the helicoid, with ¢(u,v) =
(acoshv cosu, acoshvsinu, av), resp. ¢(u,v) = (asinhvcosu, asinh v sinu, au).

9. Show that the Gaussian curvature of the minimal surface determined by the Weierstrass representation

is given by
419 )2
K=—|77"7""55] .
(Ifl (1+1g/*)?

Show that either K = 0 or its zeros are isolated. [There is a way of doing this problem almost without
calculations.  Think about the relation between g and the Gauss map and the fact that stereographic
projection is conformal.]

10. The Weierstrass representation is not unique: if ¢ q) : D — R3 is the associated parametrization and
a: W — D is a bijective holomorphic map, then ¢ ¢ 4y o« is another representation of the same minimal
surface and it must have the same form with different f and g (which should be specified). By choosing
a(z) = g7(z), show that, locally around regular points of g at which ¢’ is non-zero, we can assume
that our pair (f,g) is of the form (F,id), for some local holomorphic function F. We denote such a
representation by ¢p. Show that the minimal surfaces given by ¢.-ie p for 6 real are all locally isometric.
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11. Let S; and S» be surfaces with Gauss curvature Kg,, Kg, respectively.
(i) Suppose f : S; — S5 is a diffeomorphism with Kg,(f(x)) = Kg, (z). Must f be an isometry?

(ii) Suppose that for any geodesic v : I — S; parametrised by arc-length, fo~y: I — Sy is also a geodesic
parametrised by arc-length. Must f be an isometry?

(iii) Let p; € S, p2 € Sa. Suppose S; and Sy are locally isometric around p; and ps. Show that there
exists a geodesic 1 () emanating from p; and 7, (¢) emanating from py such that Kg, (71(t)) = K, (7(1)),
and such that if a;(¢) is a geodesic emanating from p; and making an angle 6 from ~;, for ¢ = 1,2 and
fixed 6, then Kg, (a1(t)) = Kg,(as(t)). Here all geodesics are parametrised by arc-length.

(iv) Show conversely that if the above property is satisfied, then the S; are locally isometric near the
p;. Deduce that if S7 and Sy have constant curvature Kg, = Kg,, then S; and Sy are locally isometric.
[Hint: Consider geodesic polar coordinates and solve an ODE for G.]

These questions are not part of the examples sheet. You should feel completely free to prioritise other
things.

12. The intrinsic distance of a smooth embedded surface S C R3 is defined as follows. Given p and ¢ in S let
d(p,q) = infaeqp,q) £(r). Show that d is a metric, which is compatible with the topology of S. If S is
complete (and without boundary) the Hopf-Rinow theorem asserts that given two points p and ¢ there
exists a geodesic v joining the points such that d(p,q) = () and geodesics are defined for all ¢ € R.

(i) Show that if f: S; — S is an isometry, then da(f(p), f(¢)) = d1(p, q) for all p and ¢ in 5.

(ii) A geodesic 7y : [0,00) — S is called a ray leaving from p if it realizes the distance between ~(0) and
v(s) for all s € [0,00). Let p be a point in a complete, noncompact surface S. Prove that S contains a
ray leaving from p. [You may assume that geodesics vary smoothly (hence continuously) with their initial
conditions.]

(ii) Let S be a connected surface and let p be such that all geodesics through p are closed, i.e. all geodesics
through p extend to smooth maps 7 : S' — S. Show that S is compact.

13. Show that any geodesic of the paraboloid of revolution z = 22 + y? which is not a meridian intersects
itself an infinite number of times [Hint: use Clairaut’s relation from IB. You may assume that no geodesic
of a surface of revolution can be asymptotic to a parallel which is not itself a geodesic. ]

14. Take a good look at pictures of minimal surfaces online! You can get a free Mathematica license from
the University if you want to play around with them yourself. Instructions (and the Mathematica code
for the ones in class) are on Moodle. Or get some wire and make some soap films...
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